Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Hazard Mater ; 444(Pt A): 130387, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403442

RESUMO

Estuaries are continually threatened by anthropogenic pressures, consequently, a large group of contaminants harmful to human health affects the aquatic biota; therefore, it is necessary to monitor their quality. This study deals with the determination of a large group of compounds representing different endocrine-disrupting compounds (EDCs) classes [21 pesticides, 4 polycyclic musk fragrances, 4 UV-filters, 7 bisphenols, 6 polybrominated diphenyl ethers (PBDEs) and 8 of their methoxylated (MeO-BDEs)] in several estuarine species (fish, bivalves, crustaceans, earthworm, and macroalgae) collected seasonally along one year in two distinct areas of Tagus River estuary ("contaminated" vs. "clean" areas). The most abundant compounds found were galaxolide (HHCB) (81% positive samples; 0.04-74 ng/g ww), isoamyl 4-methoxycinnamate (IMC) (64%; 1.13-251 ng/g ww), alachlor (44%; 0.08-16 ng/g ww), and BDE-47 (36%; 0.06-2.26 ng/g ww). Polycyclic musks were the most frequent contaminants in fish (seabass, barbus, mullet, and sole) and macroalgae samples, while UV-filters were predominant in bivalves and crustaceans, and bisphenols in earthworms. Seasonal variation was verified for Σpesticides and Σmusks, with significantly higher levels in summer and autumn, whereas ΣUV-filters highest levels were found in spring and summer, and for ΣPBDEs statistically higher levels were registered in cold seasons (autumn and winter). Σbisphenols were significantly lower in spring than in the other seasons. In general, considering all species analysed in both areas, no statistically significant differences (p > 0.05) were verified between the two collection areas. Based on the estimated daily intake data, consumption of fish from this estuary is unlikely to be a human health concern, since the levels of contamination were below the toxicological threshold values. Overall, the data obtained in this study will allow regulatory authorities to identify and prioritize contaminants monitoring programs in estuaries, such as the case of bisphenol A, which was found, for the first time, in earthworm and clam species.


Assuntos
Disruptores Endócrinos , Oligoquetos , Animais , Humanos , Estuários , Estações do Ano , Oceano Atlântico , Biota , Medição de Risco
2.
Sci Total Environ ; 857(Pt 2): 159491, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270380

RESUMO

Rising levels of atmospheric carbon dioxide (CO2) are driving ocean warming and acidification, which may negatively affect the nutritional quality and physiological performance of commercially important fish species. Thus, this study aimed to evaluate the effects of ocean acidification (OA; ΔpH = -0.3 units equivalent to ΔpCO2 ~ +600 µatm) and warming (OW; ΔT = +4 °C) (and combined, OAW) on the proximate composition, fitness and energy budget of juvenile Senegalese sole (Solea senegalensis). After an exposure period of 75 days, growth (G), metabolism (R) and excretion (faecal, F and nitrogenous losses, U) were assessed to calculate the energy intake (C). Biometric and viscera weight data were also registered to determine animal fitness. Overall, the proximate composition and gross energy were not significantly affected by acidification and warming (alone or in combination). Weight gain, maximum and standard metabolic rates (MMR and SMR, respectively), aerobic scope (AS) and C were significantly higher in fish subjected to OA, OW and OAW than in CTR conditions. Furthermore, the highest relative growth rates (RGR), specific growth rates in terms of wet weight (SGRw) and protein (SGRp), as well as feed efficiencies (FE) occurred in fish submitted to OW and OAW. On the other hand, fish exposed to CTR conditions had significantly higher feed conversion ratio (FCR) and ammonia excretion rate (AER) than those exposed to simulated stressors. Regarding energy distribution, the highest fraction was generally allocated to growth (48-63 %), followed by excretion through faeces (36-51 %), respiration (approximately 1 %) and ammonia excretion (0.1-0.2 %) in all treatments. Therefore, ocean warming and acidification can trigger physiological responses in juvenile Senegalese sole, particularly in their energy budget, which can affect the energy flow and allocation of its population. However, and in general, this species seems highly resilient to these predicted ocean climate change stressors.


Assuntos
Linguados , Água do Mar , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Amônia/toxicidade , Oceanos e Mares , Temperatura
3.
Conserv Physiol ; 10(1): coac048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875680

RESUMO

A mechanistic model based on Dynamic Energy Budget (DEB) theory was developed to predict the combined effects of ocean warming, acidification and decreased food availability on growth and reproduction of three commercially important marine fish species: white seabream (Diplodus sargus), zebra seabream (Diplodus cervinus) and Senegalese sole (Solea senegalensis). Model simulations used a parameter set for each species, estimated by the Add-my-Pet method using data from laboratory experiments complemented with bibliographic sources. An acidification stress factor was added as a modifier of the somatic maintenance costs and estimated for each species to quantify the effect of a decrease in pH from 8.0 to 7.4 (white seabream) or 7.7 (zebra seabream and Senegalese sole). The model was used to project total length of individuals along their usual lifespan and number of eggs produced by an adult individual within one year, under different climate change scenarios for the end of the 21st century. For the Intergovernmental Panel on Climate Change SSP5-8.5, ocean warming led to higher growth rates during the first years of development, as well as an increase of 32-34% in egg production, for the three species. Ocean acidification contributed to reduced growth for white seabream and Senegalese sole and a small increase for zebra seabream, as well as a decrease in egg production of 48-52% and 14-33% for white seabream and Senegalese sole, respectively, and an increase of 4-5% for zebra seabream. The combined effect of ocean warming and acidification is strongly dependent on the decrease of food availability, which leads to significant reduction in growth and egg production. This is the first study to assess the combined effects of ocean warming and acidification using DEB models on fish, therefore, further research is needed for a better understanding of these climate change-related effects among different taxonomic groups and species.

4.
Environ Res ; 164: 186-196, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29501006

RESUMO

Climate change and chemical contamination are global environmental threats of growing concern for the scientific community and regulatory authorities. Yet, the impacts and interactions of both stressors (particularly ocean warming and emerging chemical contaminants) on physiological responses of marine organisms remain unclear and still require further understanding. Within this context, the main goal of this study was to assess, for the first time, the effects of warming (+ 5 °C) and accumulation of a polybrominated diphenyl ether congener (BDE-209, brominated flame retardant) through dietary exposure on energy budget of the juvenile white seabream (Diplodus sargus). Specifically, growth (G), routine metabolism (R), excretion (faecal, F and nitrogenous losses, U) and food consumption (C) were calculated to obtain the energy budget. The results demonstrated that the energy proportion spent for G dominated the mode of the energy allocation of juvenile white seabream (56.0-67.8%), especially under the combined effect of warming plus BDE-209 exposure. Under all treatments, the energy channelled for R varied around 26% and a much smaller percentage was channelled for excretion (F: 4.3-16.0% and U: 2.3-3.3%). An opposite trend to G was observed to F, where the highest percentage (16.0 ±â€¯0.9%) was found under control temperature and BDE-209 exposure via diet. In general, the parameters were significantly affected by increased temperature and flame retardant exposure, where higher levels occurred for: i) wet weight, relative growth rate, protein and ash contents under warming conditions, ii) only for O:N ratio under BDE-209 exposure via diet, and iii) for feed efficiency, ammonia excretion rate, routine metabolic rate and assimilation efficiency under the combination of both stressors. On the other hand, decreased viscerosomatic index was observed under warming and lower fat content was observed under the combined effect of both stressors. Overall, under future warming and chemical contamination conditions, fish energy budget was greatly affected, which may dictate negative cascading impacts at population and community levels. Further research combining other climate change stressors (e.g. acidification and hypoxia) and emerging chemical contaminants are needed to better understand and forecast such biological effects in a changing ocean.


Assuntos
Mudança Climática , Peixes , Retardadores de Chama , Animais , Organismos Aquáticos , Peixes/fisiologia , Aquecimento Global , Dinâmica Populacional , Temperatura
5.
Environ Res ; 143(Pt B): 11-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25864933

RESUMO

This research classifies European consumers into segments based on their health risk-benefit perception related to seafood consumption. The profiling variables of these segments are seafood consumption frequency, general attitude toward consuming fish, confidence in control organizations, attitude toward the marine environment, environmental concern and socio-demographics. A web-based survey was performed in one western European country (Belgium), one northern European country (Ireland) and three southern European countries (Italy, Portugal and Spain), resulting in a total sample of 2824 participants. A cluster analysis was performed based on risk-benefit perception related to seafood and the profiles of the segments were determined by a robust 2-way ANOVA analysis accounting for country effects. Although this study confirms consumers' positive image of consuming seafood, gradients are found in health risk-benefit perception related to seafood consumption. Seafood consumption frequency is mainly determined by country-related traditions and habits related to seafood rather than by risk-benefit perceptions. Segments with a higher benefit perception, irrespective of their level of risk perception, show a more positive attitude toward consuming seafood and toward the marine environment; moreover, they report a higher concern about the marine environment and have a higher involvement with seafood and with the marine environment. Consequently, information campaigns concentrating on pro-environmental behavior are recommended to raise the involvement with seafood and the marine environment as this is associated with a higher environmental concern. This research underpins that in such information campaigns a nationally differentiated rather than a pan-European or international information strategy should be aimed for because of significant cultural differences between the identified segments.


Assuntos
Participação da Comunidade , Monitoramento Ambiental/métodos , Preferências Alimentares , Conhecimentos, Atitudes e Prática em Saúde , Alimentos Marinhos/normas , Poluição da Água/análise , Análise por Conglomerados , Europa (Continente) , Feminino , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Humanos , Masculino , Modelos Teóricos , Medição de Risco , Fatores Socioeconômicos , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA