Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 51(5): 3265-3274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588491

RESUMO

BACKGROUND: The detectability performance of a CT scanner is difficult to precisely quantify when nonlinearities are present in reconstruction. An efficient detectability assessment method that is sensitive to small effects of dose and scanner settings is desirable. We previously proposed a method using a search challenge instrument: a phantom is embedded with hundreds of lesions at random locations, and a model observer is used to detect lesions. Preliminary tests in simulation and a prototype showed promising results. PURPOSE: In this work, we fabricated a full-size search challenge phantom with design updates, including changes to lesion size, contrast, and number, and studied our implementation by comparing the lesion detectability from a nonprewhitening (NPW) model observer between different reconstructions at different exposure levels, and by estimating the instrument sensitivity to detect changes in dose. METHODS: Designed to fit into QRM anthropomorphic phantoms, our search challenge phantom is a cylindrical insert 10 cm wide and 4 cm thick, embedded with 12 000 lesions (nominal width of 0.6 mm, height of 0.8 mm, and contrast of -350 HU), and was fabricated using PixelPrint, a 3D printing technique. The insert was scanned alone at a high dose to assess printing accuracy. To evaluate lesion detectability, the insert was placed in a QRM thorax phantom and scanned from 50 to 625 mAs with increments of 25 mAs, once per exposure level, and the average of all exposure levels was used as high-dose reference. Scans were reconstructed with three different settings: filtered-backprojection (FBP) with Br40 and Br59, and Sinogram Affirmed Iterative Reconstruction (SAFIRE) with strength level 5 and Br59 kernel. An NPW model observer was used to search for lesions, and detection performance of different settings were compared using area under the exponential transform of free response ROC curve (AUC). Using propagation of uncertainty, the sensitivity to changes in dose was estimated by the percent change in exposure due to one standard deviation of AUC, measured from 5 repeat scans at 100, 200, 300, and 400 mAs. RESULTS: The printed insert lesions had an average position error of 0.20 mm compared to printing reference. As the exposure level increases from 50 mAs to 625 mAs, the lesion detectability AUCs increase from 0.38 to 0.92, 0.42 to 0.98, and 0.41 to 0.97 for FBP Br40, FBP Br59, and SAFIRE Br59, respectively, with a lower rate of increase at higher exposure level. FBP Br59 performed best with AUC 0.01 higher than SAFIRE Br59 on average and 0.07 higher than FBP Br40 (all P < 0.001). The standard deviation of AUC was less than 0.006, and the sensitivity to detect changes in mAs was within 2% for FBP Br59. CONCLUSIONS: Our 3D-printed search challenge phantom with 12 000 submillimeter lesions, together with an NPW model observer, provide an efficient CT detectability assessment method that is sensitive to subtle effects in reconstruction and is sensitive to small changes in dose.


Assuntos
Imagens de Fantasmas , Impressão Tridimensional , Tomografia Computadorizada por Raios X , Doses de Radiação , Processamento de Imagem Assistida por Computador/métodos , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38618158

RESUMO

Coronary CT angiography (cCTA) is a fast non-invasive imaging exam for coronary artery disease (CAD) but struggles with dense calcifications and stents due to blooming artifacts, potentially causing stenosis overestimation. Virtual monoenergetic images (VMIs) at higher keV (e.g., 100 keV) from photon counting detector (PCD) CT have shown promise in reducing blooming artifacts and improving lumen visibility through its simultaneous high-resolution and multi-energy imaging capability. However, most cCTA exams are performed with single-energy CT (SECT) using conventional energy-integrating detectors (EID). Generating VMIs through EID-CT requires advanced multi-energy CT (MECT) scanners and potentially sacrifices temporal resolution. Given these limitations, MECT cCTA exams are not commonly performed on EID-CT and VMIs are not routinely generated. To tackle this, we aim to enhance the multi-energy imaging capability of EID-CT through the utilization of a convolutional neural network to LEarn MONoenergetic imAging from VMIs at Different Energies (LEMONADE). The neural network was trained using ten patient cCTA exams acquired on a clinical PCD-CT (NAEOTOM Alpha, Siemens Healthineers), with 70 keV VMIs as input (which is nominally equivalent to the SECT from EID-CT scanned at 120 kV) and 100 keV VMIs as the target. Subsequently, we evaluated the performance of EID-CT equipped with LEMONADE on both phantom and patient cases (n=10) for stenosis assessment. Results indicated that LEMONADE accurately quantified stenosis in three phantoms, aligning closely with ground truth and demonstrating stenosis percentage area reductions of 13%, 8%, and 9%. In patient cases, it led to a 12.9% reduction in average diameter luminal stenosis when compared to the original SECT without LEMONADE. These outcomes highlight LEMONADE's capacity to enable multi-energy CT imaging, mitigate blooming artifacts, and improve stenosis assessment for the widely available EID-CT. This has a high potential impact as most cCTA exams are performed on EID-CT.

3.
J Comput Assist Tomogr ; 48(1): 104-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37566794

RESUMO

OBJECTIVE: Pulse pileup effects occur when pulses occur so close together that they fall on top of one another, resulting in count loss and errors in energy thresholding. To date, there has been little work systematically detailing the quantitative effects of pulse pileup on material decomposition accuracy for photon-counting detector (PCD) computed tomography (CT). Our aim in this work was to quantify the effects of pulse pileup on single-energy and multienergy CT images, including low-energy bin (BL), high-energy bin (BH), iodine map, and virtual noncontrast images from a commercial PCD-CT. METHODS: Scans of a 20-cm diameter multienergy CT phantom with 10 solid inserts were acquired at a fixed tube potential as the tube current was varied across the available range. Four types of images (BL, BH, iodine map, and virtual noncontrast) were reconstructed using an iterative reconstruction algorithm at strength 2, a quantitative reconstruction kernel (Qr40), 2-/1-mm slice thickness/increment, and a 210-mm field-of-view. The mean and standard deviation of CT numbers were recorded and the ratios of CT number between BL and BH images were calculated and plotted, along with noise versus tube current and noise × versus tube current. RESULTS: As tube current was increased, the range of variations in CT numbers was less than 13.4 HU for all inserts and image types evaluated. Noise × versus tube current showed a small positive slope equal to a noise increase from 100 mA of 10% at 500 mA and 15% at 900 mA compared with what would be expected if the slope was zero. CONCLUSIONS: Minimal impact on single-energy and multienergy CT numbers and noise performance was observed for the evaluated clinical PCD-CT system.


Assuntos
Iodo , Fótons , Humanos , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Algoritmos
4.
Artigo em Inglês | MEDLINE | ID: mdl-35785242

RESUMO

Conventional dual-source CT scanners can be used to either provide better temporal resolution or dual-energy imaging, but not both at the same time. This presents a dilemma in cardiac CT as both high temporal resolution and multi-energy imaging are desirable. The current study evaluated a dual-source photon-counting-detector (DS-PCD) CT which can acquire multi-energy images at high temporal resolution. A cardiac motion phantom with a 3-mm diameter iodinated rod, mimicking the right coronary artery, was scanned 25 times using a DS-PCD CT (66 ms resolution) and a dual-source dual-energy (DS-DE, 125 ms resolution) CT. Low/high energy images and iodine maps were reconstructed at 40% and 75% cardiac phases. To quantify the impact of motion on image quality, dice similarity coefficient was computed between the low/high energy images while the circularity and effective diameter of the iodinated rod were computed on the iodine maps. The dice coefficients were higher for DS-PCD with a mean of 0.89 and 0.91 at the 40% and 70% phases, while DS-DE had a lower mean of 0.20 and 0.78, respectively. The circularity was excellent for DS-PCD with a mean of 0.97 and 0.98 at the 40% and 75% phases, while DS-DE had a mean of 0.71 and 0.98, respectively. The effective diameter was accurate for DS-PCD with a mean of 2.9 mm (true size of 3 mm) at both phases, while DS-DE had a mean of 4.0 mm and 3.2 mm at the 40% and 75% phases, respectively. These results indicate that DS-PCD CT enables simultaneous high temporal resolution and multi-energy cardiac imaging with minimal motion artifacts.

5.
Med Phys ; 49(8): 4988-4998, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35754205

RESUMO

BACKGROUND: A common rule of thumb for object detection is the Rose criterion, which states that a signal must be five standard deviations above background to be detectable to a human observer. The validity of the Rose criterion in CT imaging is limited due to the presence of correlated noise. Recent reconstruction and denoising methodologies are also able to restore apparent image quality in very noisy conditions, and the ultimate limits of these methodologies are not yet known. PURPOSE: To establish a lower bound on the minimum achievable signal-to-noise ratio (SNR) for object detection, below which detection performance is poor regardless of reconstruction or denoising methodology. METHODS: We consider a numerical observer that operates on projection data and has perfect knowledge of the background and the objects to be detected, and determine the minimum projection SNR that is necessary to achieve predetermined lesion-level sensitivity and case-level specificity targets. We define a set of discrete signal objects O $\mathcal{O}$ that encompasses any lesion of interest and could include lesions of different sizes, shapes, and locations. The task is to determine which object of O $\mathcal{O}$ is present, or to state the null hypothesis that no object is present. We constrain each object in O $\mathcal{O}$ to have equivalent projection SNR and use Monte Carlo methods to calculate the required projection SNR necessary. Because our calculations are performed in projection space, they impose an upper limit on the performance possible from reconstructed images. We chose O $\mathcal{O}$ to be a collection of elliptical or circular low contrast metastases and simulated detection of these objects in a parallel beam system with Gaussian statistics. Unless otherwise stated, we assume a target of 80% lesion-level sensitivity and 80% case-level specificity and a search field of view that is 6 cm by 6 cm by 10 slices. RESULTS: When O $\mathcal{O}$ contains only a single object, our problem is equivalent to two-alternative forced choice (2AFC) and the required projection SNR is 1.7. When O $\mathcal{O}$ consists of circular 6-mm lesions at different locations in space, the required projection SNR is 5.1. When O $\mathcal{O}$ is extended to include ellipses and circles of different sizes, the required projection SNR increases to 5.3. The required SNR increases if the sensitivity target, specificity target, or search field of view increases. CONCLUSIONS: Even with perfect knowledge of the background and target objects, the ideal observer still requires an SNR of approximately 5. This is a lower bound on the SNR that would be required in real conditions, where the background and target objects are not known perfectly. Algorithms that denoise lesions with less than 5 projection SNR, regardless of the denoising methodology, are expected to show vanishing effects or false positive lesions.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Humanos , Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos
6.
Phys Med Biol ; 66(20)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34271558

RESUMO

We report a comprehensive evaluation of a full field-of-view (FOV) photon-counting detector (PCD) computed tomography (CT) system using phantoms, and qualitatively assess image quality in patient examples. A whole-body PCD-CT system with 50 cm FOV, 5.76 cm z-detector coverage and two acquisition modes (standard: 144 × 0.4 mm collimation and ultra-high resolution (UHR): 120 × 0.2 mm collimation) was used in this study. Phantoms were scanned to assess image uniformity, CT number accuracy, noise power spectrum, spatial resolution, material decomposition and virtual monoenergetic imaging (VMI) performance. Four patients were scanned on the PCD-CT system with matched or lower radiation dose than their prior clinical CT scans performed using energy-integrating detector (EID) CT, and the potential clinical impact of PCD-CT was qualitatively evaluated. Phantom results showed water CT numbers within ±5 HU, and image uniformity measured between peripheral and central regions-of-interests to be within ±5 HU. For the UHR mode using a dedicated sharp kernel, the cut-off spatial frequency was 40 line-pairs cm-1, which corresponds to a 125µm limiting in-plane spatial resolution. The full-width-at-half-maximum for the section sensitivity profile was 0.33 mm for the smallest slice thickness (0.2 mm) using the UHR mode. Material decomposition in a multi-energy CT phantom showed accurate material classification, with a root-mean-squared-error of 0.3 mg cc-1for iodine concentrations (2-15 mg cc-1) and 14.2 mg cc-1for hydroxyapatite concentrations (200 and 400 mg cc-1). The average percent error for CT numbers corresponding to the iodine concentrations in VMI (40-70 keV) was 2.75%. Patient PCD-CT images demonstrated better delineation of anatomy for chest and temporal bone exams performed with the UHR mode, which allowed the use of very sharp kernels not possible with EID-CT. VMI and virtual non-contrast images generated from a patient head CT angiography exam using the standard acquisition mode demonstrated the multi-energy capability of the PCD-CT system.


Assuntos
Iodo , Fótons , Humanos , Avaliação de Resultados da Assistência ao Paciente , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-33986559

RESUMO

Channelized Hotelling observer (CHO), which has been shown to be well correlated with human observer performance in many clinical CT tasks, has a great potential to become the method of choice for objective image quality assessment. However, the use of CHO in clinical CT is still quite limited, mainly due to its complexity in measurement and calculation in practice, and the lack of access to an efficient and validated software tool for most clinical users. In this work, a web-based software platform for CT image quality assessment and protocol optimization (CTPro) was introduced. A validated CHO tool, along with other common image quality assessment tools, was made readily accessible through this web platform for clinical users and researchers without the need of installing additional software. An example of its application to evaluation of convolutional-neural-network (CNN)-based denoising was demonstrated.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35400786

RESUMO

Computed tomography (CT) using photon-counting detectors (PCD) offers dose-efficient ultra-high-resolution imaging, high iodine contrast-to-noise ratio, multi-energy and material decomposition capabilities. We have previously demonstrated the potential benefits of PCD-CT using phantoms, cadavers, and human studies on a prototype PCD-CT system. This system, however, had several limitations in terms of scan field-of-view (FOV) and longitudinal coverage. Recently, a full FOV (50 cm) PCD-CT system with wider longitudinal coverage and higher spatial resolution (0.15 mm detector pixels) has been installed in our lab capable of human scanning at clinical dose and dose rate. In this work, we share our initial experience of the new PCD-CT system and compare its performance with a state-of-the-art 3rd generation dual-source CT scanner. Basic image quality was assessed using an ACR CT accreditation phantom, high-resolution performance using an anthropomorphic head phantom, and multi-energy and material decomposition performance using a multi-energy CT phantom containing various concentrations of iodine and hydroxyapatite. Finally, we demonstrate the feasibility of high-resolution, full FOV PCD-CT imaging for improved delineation of anatomical and pathological features in a patient with pulmonary nodules.

9.
Acad Radiol ; 26(11): 1488-1494, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30655055

RESUMO

RATIONALE AND OBJECTIVES: Multidetector computed tomography (MDCT) is useful for measuring in the research setting single-kidney perfusion and function using iodinated contrast time-attenuation curves. Obesity promotes deposition of intrarenal fat, which might decrease tissue attenuation and thereby interfere with quantification of renal function using MDCT. The purpose of this study was to test the hypothesis that background subtraction adequately accounts for intrarenal fat deposition in mildly obese human subjects during renal contrast enhanced dynamic CT. MATERIALS AND METHODS: We prospectively recruited seventeen human subjects stratified as lean or mildly obese based on body mass index below or over 30 kg/m2, respectively. Renal perfusion was quantified from CT-derived indicator-dilution curves after background subtraction. Dual-energy MDCT images were postprocessed to generate iodine and virtual-noncontrast datasets, and the ratios between kidney/aorta CT numbers and iodine values calculated as surrogates of renal function. RESULTS: Subcutaneous adipose tissue was increased in obese subjects. Virtual-noncontrast maps revealed in obese patients a decrease in basal cortical and medullary attenuation. Overall, basal attenuation inversely correlated with body mass index, in line with renal fat deposition. Contrarily, the kidney/aorta CT attenuation (after background subtraction) and kidney/aorta iodine ratios were similar between lean and obese subjects and correlated directly. These observations show that following background subtraction, the CT number reliably reflects basal tissue attenuation. CONCLUSION: Therefore, our findings support our hypothesis that background subtraction enables reliable assessment of kidney function in mildly obese subjects using MDCT, despite decreased basal attenuation due to renal adiposity.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Adiposidade , Índice de Massa Corporal , Taxa de Filtração Glomerular/fisiologia , Rim/diagnóstico por imagem , Tomografia Computadorizada Multidetectores/métodos , Obesidade/diagnóstico , Idoso , Meios de Contraste , Feminino , Humanos , Rim/fisiopatologia , Masculino , Obesidade/fisiopatologia
10.
AJR Am J Roentgenol ; 212(2): 395-401, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30667317

RESUMO

OBJECTIVE: The purpose of this study was to evaluate the performance of three metal artifact reduction methods in dual-energy CT (DECT) examinations of instrumented spines. MATERIALS AND METHODS: Twenty patients with instrumented spines who underwent spine DECT were retrospectively identified. All scans were obtained on a dual-source 128-MDCT scanner. In addition to the original DE mixed images, DECT images were reconstructed using an iterative metal artifact reconstruction algorithm (DE iMAR), virtual monochromatic imaging (VMI) algorithm (DE Mono+), and a combination of the two algorithms DE iMAR and DE Mono+, which we refer to here as "DE iMAR Mono+." The four image series were anonymized and randomized for a reader study. Four experienced neuroradiologists rated the images in terms of artifact scores of four anatomic regions and overall image quality scores in both bone and soft-tissue display window settings. In addition, a quantitative analysis was performed to assess the performance of the three metal artifact reduction methods. RESULTS: There were statistically significant differences in the artifact scores and overall image quality scores among the four methods (both, p < 0.001). DE iMAR Mono+ showed the best artifact scores and quality scores (all, p < 0.001). The intraclass correlation coefficient for the overall image quality score was 0.779 using the bone display window and 0.892 using the soft-tissue display window (both, p < 0.001). In addition, DE iMAR Mono+ reduced the artifacts by the greatest amount in the quantitative analysis. CONCLUSION: The method that used DE iMAR Mono+ showed the best performance of spine metal artifact reduction using DECT data. These results may be specific to this CT vendor and implant type.


Assuntos
Artefatos , Parafusos Ósseos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Masculino , Metais , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Estudos Retrospectivos
11.
Med Phys ; 46(2): 902-912, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30565704

RESUMO

PURPOSE: Size-specific dose estimates (SSDE) conversion factors have been determined by AAPM Report 204 to adjust CTDIvol to account for patient size but were limited to body CT examinations. The purpose of this work was to determine conversion factors that could be used for an SSDE for helical, head CT examinations for patients of different sizes. METHODS: Validated Monte Carlo (MC) simulation methods were used to estimate dose to the center of the scan volume from a routine, helical head examination for a group of patient models representing a range of ages and sizes. Ten GSF/ICRP voxelized phantom models and five pediatric voxelized patient models created from CT image data were used in this study. CT scans were simulated using a Siemens multidetector row CT equivalent source model. Scan parameters were taken from the AAPM Routine Head protocols for a fixed tube current (FTC), helical protocol, and scan lengths were adapted to the anatomy of each patient model. MC simulations were performed using mesh tallies to produce voxelized dose distributions for the entire scan volume of each model. Three tally regions were investigated: (1) a small 0.6 cc volume at the center of the scan volume, (2) 0.8-1.0 cm axial slab at the center of the scan volume, and (3) the entire scan volume. Mean dose to brain parenchyma for all three regions was calculated. Mean bone dose and a mass-weighted average dose, consisting of brain parenchyma and bone, were also calculated for the slab in the central plane and the entire scan volume. All dose measures were then normalized by CTDIvol for the 16 cm phantom (CTDIvol,16 ). Conversion factors were determined by calculating the relationship between normalized doses and water equivalent diameter (Dw ). RESULTS: CTDIvol,16 -normalized mean brain parenchyma dose values within the 0.6 cc volume, 0.8-1.0 cm central axial slab, and the entire scan volume, when parameterized by Dw , had an exponential relationship with a coefficient of determination (R2 ) of 0.86, 0.84, and 0.88, respectively. There was no statistically significant difference between the conversion factors resulting from these three different tally regions. Exponential relationships between CTDIvol,16 -normalized mean bone doses had R2 values of 0.83 and 0.87 for the central slab and for the entire scan volume, respectively. CTDIvol,16 -normalized mass-weighted average doses had R2 values of 0.39 and 0.51 for the central slab and for the entire scan volume, respectively. CONCLUSIONS: Conversion factors that describe the exponential relationship between CTDIvol,16 -normalized mean brain dose and a size metric (Dw ) for helical head CT examinations have been reported for two different interpretations of the center of the scan volume. These dose descriptors have been extended to describe the dose to bone in the center of the scan volume as well as a mass-weighted average dose to brain and bone. These may be used, when combined with other efforts, to develop an SSDE dose coefficients for routine, helical head CT examinations.


Assuntos
Encéfalo/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Método de Monte Carlo , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada Espiral/métodos , Adulto , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos da radiação , Encéfalo/efeitos da radiação , Criança , Pré-Escolar , Simulação por Computador , Feminino , Cabeça/efeitos da radiação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Radiometria/métodos , Dosagem Radioterapêutica
12.
Inflamm Bowel Dis ; 25(6): 1072-1079, 2019 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-30476314

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) patients are at risk of developing complications from metabolic bone disease, but the exact prevalence is unknown. We evaluated fracture risk in IBD patients using (1) biomechanical CT analysis (BCT) using bone strength and bone mineral density (BMD), (2) Cornerstone guidelines, and (3) other clinical features predicting fracture risk. METHODS: A retrospective review of consecutive IBD patients who underwent CT enterography (CTE) with BCT from March 2014 to March 2017 was performed. Measured outcomes were overall fracture risk classification (not increased, increased, or high) and femoral neck BMD World Health Organization classification (normal, osteopenia, or osteoporosis). RESULTS: Two hundred fifty-seven patients with IBD underwent CTE and BCT. Fracture risk was classified as not increased in 45.5% (116/255) of patients, increased in 44.7% (114/255), and high in 9.8% (25/255). Femoral neck BMD was classified as normal in 56.8% (142/250), osteopenia in 37.6% (94/250), and osteoporosis in 5.6% (14/250). In multivariate analysis, only increasing age was associated with increased fracture risk (odds ratio, 1.06; 95% confidence interval, 1.04-1.08; P < 0.001). Cornerstone guidelines were met by 35.3% (41/116), 56.1% (64/114), and 76.0% (19/25) of patients in the not increased, increased, and high-risk groups, respectively (P = 0.0001). No Cornerstone criteria were met by 40% (56/139) of patients in the increased and high-risk groups. CONCLUSIONS: Using BCT, increased or high fracture risk was detected in more than half of this cohort, the prevalence being associated with increased age. A significant proportion of patients with increased or high fracture risk did not meet Cornerstone guidelines. Therefore, IBD patients who do not meet Cornerstone guidelines may benefit from BCT screening.


Assuntos
Doenças Ósseas Metabólicas/diagnóstico , Fraturas Ósseas/diagnóstico , Doenças Inflamatórias Intestinais/complicações , Programas de Rastreamento/métodos , Osteoporose/diagnóstico , Guias de Prática Clínica como Assunto , Tomografia Computadorizada por Raios X/métodos , Adulto , Densidade Óssea , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/epidemiologia , Doenças Ósseas Metabólicas/etiologia , Feminino , Seguimentos , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/etiologia , Humanos , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Osteoporose/diagnóstico por imagem , Osteoporose/epidemiologia , Osteoporose/etiologia , Prevalência , Prognóstico , Estudos Retrospectivos
13.
Med Phys ; 45(10): 4667-4682, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30118143

RESUMO

PURPOSE: The purpose of this study was to estimate the radiation dose to the lung and breast as well as the effective dose from tube current modulated (TCM) lung cancer screening (LCS) scans across a range of patient sizes. METHODS: Monte Carlo (MC) methods were used to calculate lung, breast, and effective doses from a low-dose LCS protocol for a 64-slice CT that used TCM. Scanning parameters were from the protocols published by AAPM's Alliance for Quality CT. To determine lung, breast, and effective doses from lung cancer screening, eight GSF/ICRP voxelized phantom models with all radiosensitive organs identified were used to estimate lung, breast, and effective doses. Additionally, to extend the limited size range provided by the GSF/ICRP phantom models, 30 voxelized patient models of thoracic anatomy were generated from LCS patient data. For these patient models, lung and breast were semi-automatically segmented. TCM schemes for each of the GSF/ICRP phantom models were generated using a validated method wherein tissue attenuation and scanner limitations were used to determine the TCM output as a function of table position and source angle. TCM schemes for voxelized patient models were extracted from the raw projection data. The water equivalent diameter, Dw, was used as the patient size descriptor. Dw was estimated for the GSF/ICRP models. For the thoracic patient models, Dw was extracted from the DICOM header of the CT localizer radiograph. MC simulations were performed using the TCM scheme for each model. Absolute organ doses were tallied and effective doses were calculated using ICRP 103 tissue weighting factors for the GSF/ICRP models. Metrics of scanner radiation output were determined based on each model's TCM scheme, including CTDIvol , dose length product (DLP), and CTDIvol, Low Att , a previously described regional metric of scanner output covering most of the lungs and breast. All lung and breast doses values were normalized by scan-specific CTDIvol and CTDIvol, Low Att . Effective doses were normalized by scan-specific CTDIvol and DLP. Absolute and normalized doses were reported as a function of Dw. RESULTS: Lung doses normalized by CTDIvol, Low Att were modeled as an exponential relationship with respect to Dw with coefficients of determination (R2 ) of 0.80. Breast dose normalized by CTDIvol, Low Att was modeled with an exponential relationship to Dw with an R2 of 0.23. For all eight GSF/ICRP phantom models, the effective dose using TCM protocols was below 1.6 mSv. Effective doses showed some size dependence but when normalized by DLP demonstrated a constant behavior. CONCLUSION: Lung, breast, and effective doses from LCS CT exams with TCM were estimated with respect to patient size. Normalized lung dose can be reasonably estimated with a measure of a patient size such as Dw and regional metric of CTDIvol covering the thorax such as CTDIvol, Low Att , while normalized breast dose can also be estimated with a regional metric of CTDIvol but with a larger degree of variability than observed for lung. Effective dose normalized by DLP can be estimated with a constant multiplier.


Assuntos
Tamanho Corporal , Mama/efeitos da radiação , Neoplasias Pulmonares/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Programas de Rastreamento , Doses de Radiação , Tomografia Computadorizada por Raios X , Feminino , Humanos , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Radiometria , Tomografia Computadorizada por Raios X/instrumentação
14.
Med Phys ; 44(8): 4262-4275, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28477342

RESUMO

PURPOSE: The vast majority of body CT exams are performed with automatic exposure control (AEC), which adapts the mean tube current to the patient size and modulates the tube current either angularly, longitudinally or both. However, most radiation dose estimation tools are based on fixed tube current scans. Accurate estimates of patient dose from AEC scans require knowledge of the tube current values, which is usually unavailable. The purpose of this work was to develop and validate methods to accurately estimate the tube current values prescribed by one manufacturer's AEC system to enable accurate estimates of patient dose. METHODS: Methods were developed that took into account available patient attenuation information, user selected image quality reference parameters and x-ray system limits to estimate tube current values for patient scans. Methods consistent with AAPM Report 220 were developed that used patient attenuation data that were: (a) supplied by the manufacturer in the CT localizer radiograph and (b) based on a simulated CT localizer radiograph derived from image data. For comparison, actual tube current values were extracted from the projection data of each patient. Validation of each approach was based on data collected from 40 pediatric and adult patients who received clinically indicated chest (n = 20) and abdomen/pelvis (n = 20) scans on a 64 slice multidetector row CT (Sensation 64, Siemens Healthcare, Forchheim, Germany). For each patient dataset, the following were collected with Institutional Review Board (IRB) approval: (a) projection data containing actual tube current values at each projection view, (b) CT localizer radiograph (topogram) and (c) reconstructed image data. Tube current values were estimated based on the actual topogram (actual-topo) as well as the simulated topogram based on image data (sim-topo). Each of these was compared to the actual tube current values from the patient scan. In addition, to assess the accuracy of each method in estimating patient organ doses, Monte Carlo simulations were performed by creating voxelized models of each patient, identifying key organs and incorporating tube current values into the simulations to estimate dose to the lungs and breasts (females only) for chest scans and the liver, kidney, and spleen for abdomen/pelvis scans. Organ doses from simulations using the actual tube current values were compared to those using each of the estimated tube current values (actual-topo and sim-topo). RESULTS: When compared to the actual tube current values, the average error for tube current values estimated from the actual topogram (actual-topo) and simulated topogram (sim-topo) was 3.9% and 5.8% respectively. For Monte Carlo simulations of chest CT exams using the actual tube current values and estimated tube current values (based on the actual-topo and sim-topo methods), the average differences for lung and breast doses ranged from 3.4% to 6.6%. For abdomen/pelvis exams, the average differences for liver, kidney, and spleen doses ranged from 4.2% to 5.3%. CONCLUSIONS: Strong agreement between organ doses estimated using actual and estimated tube current values provides validation of both methods for estimating tube current values based on data provided in the topogram or simulated from image data.


Assuntos
Doses de Radiação , Tomografia Computadorizada por Raios X , Adulto , Criança , Feminino , Alemanha , Humanos , Masculino , Método de Monte Carlo , Imagens de Fantasmas
15.
Proc SPIE Int Soc Opt Eng ; 94122015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26146445

RESUMO

To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way to achieve this objective is to create hybrid images that combine patient images with simulated lesions. Because conventional hybrid images generated in the image-domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Liver lesion models were forward projected according to the geometry of a commercial CT scanner to acquire lesion projections. The lesion projections were then inserted into patient projections (decoded from commercial CT raw data with the assistance of the vendor) and reconstructed to acquire hybrid images. To validate the accuracy of the forward projection geometry, simulated images reconstructed from the forward projections of a digital ACR phantom were compared to physically acquired ACR phantom images. To validate the hybrid images, lesion models were inserted into patient images and visually assessed. Results showed that the simulated phantom images and the physically acquired phantom images had great similarity in terms of HU accuracy and high-contrast resolution. The lesions in the hybrid image had a realistic appearance and merged naturally into the liver background. In addition, the inserted lesion demonstrated reconstruction-parameter-dependent appearance. Compared to conventional image-domain approach, our method enables more realistic hybrid images for image quality assessment.

16.
J Comput Assist Tomogr ; 39(4): 619-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853774

RESUMO

OBJECTIVE: To compare contrast-to-noise ratio (CNR) thresholds with visual assessment of low-contrast resolution (LCR) in filtered back projection (FBP) and iteratively reconstructed (IR) computed tomographic (CT) images. METHODS: American College of Radiology (ACR) CT accreditation phantom LCR images were acquired at CTDIvol levels of 8, 12, and 16 mGy using 2 scanner models and reconstructed using one FBP and 2 IR kernels. Acquisitions were repeated 100 times. Three board-certified medical physicists blindly reviewed the LCR section images. Pass-percentage rates (PPRs) using previous and current ACR CT accreditation criteria were compared. RESULTS: Observer PPRs for FBP images were less than 32%. For IR images, 5 of 18 settings/dose/model configurations had PPRs greater than 32% (maximum 76.3%). For CNR evaluation of FBP images, PPRs for 15 configurations were greater than 70%. For IR images, all PPRs were at least 96%. CONCLUSIONS: The CNR threshold used by the ACR CT accreditation program yields higher PPRs than visual assessment of LCR, potentially resulting in lower-quality images passing the ACR CNR criteria.


Assuntos
Acreditação/métodos , Processamento de Imagem Assistida por Computador/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído , Sociedades Médicas , Estados Unidos
17.
Artigo em Inglês | MEDLINE | ID: mdl-29755759

RESUMO

Mechanistic questions regarding kidney stone formation have led researchers to look for the presence of trace elements. Neutron activation analysis is able to identify elements at parts-per-million concentrations. Four different types of kidney stones were irradiated with thermal neutrons to produce radioisotopes. Gamma spectroscopy of samples at different counting times was used to reduce identification errors by correlating results with the half-life of identified elements. For more precise identification, Monte Carlo simulation was used to cross-check the identification process. The simulation showed promising results that could lead to fast and accurate identification of trace elements as the simulation code is improved. Sodium (Na), potassium (K), calcium (Ca), bromine (Br), samarium (Sm), zinc (Zn), cadmium (Cd), ytterbium (Yb), gold (Au), cobalt (Co), and manganese (Mn) were identified as being present in the stones, by both the experimentally measured gamma spectrum and the simulation. Among these, Ca, Br, and Zn were found to be of potential clinical relevance via a literature review. Concentrations of the elements were compared to those noted in the literature. For uric acid stones, a correlation with the literature was found for Zn and Ca. A negative correlation was found between Zn and Br for non-uric acid stones. More samples are needed to test for statistical significance.

18.
Artigo em Inglês | MEDLINE | ID: mdl-27721555

RESUMO

The purpose of this study is to use 3D printing techniques to construct a realistic liver phantom with heterogeneous background and anatomic structures from patient CT images, and to use the phantom to assess image quality with filtered backprojection and iterative reconstruction algorithms. Patient CT images were segmented into liver tissues, contrast-enhanced vessels, and liver lesions using commercial software, based on which stereolithography (STL) files were created and sent to a commercial 3D printer. A 3D liver phantom was printed after assigning different printing materials to each object to simulate appropriate attenuation of each segmented object. As high opacity materials are not available for the printer, we printed hollow vessels and filled them with iodine solutions of adjusted concentration to represent enhance levels in contrast-enhanced liver scans. The printed phantom was then placed in a 35×26 cm oblong-shaped water phantom and scanned repeatedly at 4 dose levels. Images were reconstructed using standard filtered backprojection and an iterative reconstruction algorithm with 3 different strength settings. Heterogeneous liver background were observed from the CT images and the difference in CT numbers between lesions and background were representative for low contrast lesions in liver CT studies. CT numbers in vessels filled with iodine solutions represented the enhancement of liver arteries and veins. Images were run through a Channelized Hotelling model observer with Garbor channels and ROC analysis was performed. The AUC values showed performance improvement using the iterative reconstruction algorithm and the amount of improvement increased with strength setting.

19.
Acad Radiol ; 21(11): 1441-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25086950

RESUMO

RATIONALE AND OBJECTIVES: Nephrosclerosis occurs with aging and is characterized by increased kidney subcapsular surface irregularities at autopsy. Assessments of cortical roughness in vivo could provide an important measure of nephrosclerosis. The purpose of this study was to develop and validate an image-processing algorithm for quantifying renal cortical surface roughness in vivo and determine its association with age. MATERIALS AND METHODS: Renal cortical surface roughness was measured on contrast-enhanced abdominal computed tomography (CT) images of potential living kidney donors. A roughness index was calculated based on geometric curvature of each kidney from three-dimensional images and compared to visual observation scores. Cortical roughness was compared between the oldest and youngest donors, and its interaction with cortical volume and age assessed. RESULTS: The developed quantitative roughness index identified significant differences in kidneys with visual surface roughness scores of 0 (minimal), 1 (mild), and 2 (moderate; P < .001) in a random sample of 200 potential kidney donors. Cortical roughness was significantly higher in the 94 oldest (64-75 years) versus 91 youngest (18-25 years) potential kidney donors (P < .001). Lower cortical volume was associated with older age but not with roughness (r = -0.03, P = .75). The association of oldest age group with roughness (odds ratio [OR] = 1.8 per standard deviation [SD] of roughness index) remained significant after adjustment for total cortex volume (OR = 2.0 per SD of roughness index). CONCLUSIONS: A new algorithm to measure renal cortical surface roughness from CT scans detected rougher surface in older compared to younger kidneys, independent of cortical volume loss. This novel index may allow quantitative evaluation of nephrosclerosis in vivo using contrast-enhanced CT.


Assuntos
Envelhecimento , Rim/diagnóstico por imagem , Rim/fisiopatologia , Nefroesclerose/diagnóstico por imagem , Nefroesclerose/fisiopatologia , Reconhecimento Automatizado de Padrão/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Algoritmos , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Med Phys ; 40(9): 091901, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24007152

RESUMO

PURPOSE: CT neuroperfusion examinations are capable of delivering high radiation dose to the skin or lens of the eyes of a patient and can possibly cause deterministic radiation injury. The purpose of this study is to: (a) estimate peak skin dose and eye lens dose from CT neuroperfusion examinations based on several voxelized adult patient models of different head size and (b) investigate how well those doses can be approximated by some commonly used CT dose metrics or tools, such as CTDIvol, American Association of Physicists in Medicine (AAPM) Report No. 111 style peak dose measurements, and the ImPACT organ dose calculator spreadsheet. METHODS: Monte Carlo simulation methods were used to estimate peak skin and eye lens dose on voxelized patient models, including GSF's Irene, Frank, Donna, and Golem, on four scanners from the major manufacturers at the widest collimation under all available tube potentials. Doses were reported on a per 100 mAs basis. CTDIvol measurements for a 16 cm CTDI phantom, AAPM Report No. 111 style peak dose measurements, and ImPACT calculations were performed for available scanners at all tube potentials. These were then compared with results from Monte Carlo simulations. RESULTS: The dose variations across the different voxelized patient models were small. Dependent on the tube potential and scanner and patient model, CTDIvol values overestimated peak skin dose by 26%-65%, and overestimated eye lens dose by 33%-106%, when compared to Monte Carlo simulations. AAPM Report No. 111 style measurements were much closer to peak skin estimates ranging from a 14% underestimate to a 33% overestimate, and with eye lens dose estimates ranging from a 9% underestimate to a 66% overestimate. The ImPACT spreadsheet overestimated eye lens dose by 2%-82% relative to voxelized model simulations. CONCLUSIONS: CTDIvol consistently overestimates dose to eye lens and skin. The ImPACT tool also overestimated dose to eye lenses. As such they are still useful as a conservative predictor of dose for CT neuroperfusion studies. AAPM Report No. 111 style measurements are a better predictor of both peak skin and eye lens dose than CTDIvol and ImPACT for the patient models used in this study. It should be remembered that both the AAPM Report No. 111 peak dose metric and CTDIvol dose metric are dose indices and were not intended to represent actual organ doses.


Assuntos
Cristalino/efeitos da radiação , Método de Monte Carlo , Órgãos em Risco/efeitos da radiação , Perfusão , Doses de Radiação , Relatório de Pesquisa , Pele/efeitos da radiação , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos da radiação , Humanos , Masculino , Pessoa de Meia-Idade , Radiometria , Sociedades Médicas , Fatores de Tempo , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA