Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anim Cogn ; 25(6): 1527-1544, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35668245

RESUMO

Stereotyped signals can be a fast, effective means of communicating danger, but animals assessing predation risk must often use more variable incidental cues. Red eyed-treefrog, Agalychnis callidryas, embryos hatch prematurely to escape from egg predators, cued by vibrations in attacks, but benign rain generates vibrations with overlapping properties. Facing high false-alarm costs, embryos use multiple vibration properties to inform hatching, including temporal pattern elements such as pulse durations and inter-pulse intervals. However, measures of snake and rain vibration as simple pulse-interval patterns are a poor match to embryo behavior. We used vibration playbacks to assess if embryos use a second level of temporal pattern, long gaps within a rhythmic pattern, as indicators of risks. Long vibration-free periods are common during snake attacks but absent from hard rain. Long gaps after a few initial vibrations increase the hatching response to a subsequent vibration series. Moreover, vibration patterns as short as three pulses, separated by long periods of silence, can induce as much hatching as rhythmic pulse series with five times more vibration. Embryos can retain information that increases hatching over at least 45 s of silence. This work highlights that embryo behavior is contextually modulated in complex ways. Identical vibration pulses, pulse groups, and periods of silence can be treated as risk cues in some contexts and not in others. Embryos employ a multi-faceted decision-making process to effectively distinguish between risk cues and benign stimuli.


Assuntos
Sinais (Psicologia) , Embrião não Mamífero , Animais , Embrião não Mamífero/fisiologia , Anuros/fisiologia , Serpentes , Medição de Risco
2.
Sensors (Basel) ; 13(5): 5881-96, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23698266

RESUMO

Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW) has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/ processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test.

3.
J Exp Biol ; 210(Pt 4): 614-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17267647

RESUMO

Prey assessing risk may miss cues and fail to defend themselves, or respond unnecessarily to false alarms. Error rates can be ameliorated with more information, but sampling predator cues entails risk. Red-eyed treefrogs have arboreal eggs and aquatic tadpoles. The embryos use vibrations in snake attacks to cue behaviorally mediated premature hatching, and escape, but vibrations from benign sources rarely induce hatching. Missed cues and false alarms are costly; embryos that fail to hatch are eaten and hatching prematurely increases predation by aquatic predators. Embryos use vibration duration and spacing to inform their hatching decision. This information accrues with cycles of vibration, while risk accrues over time as snakes feed. We used vibration playback experiments to test if embryos adjust sampling of information based on its cost, and measured latency to initiate hatching in videotaped snake attacks. Embryos did not initiate hatching immediately in attacks or playbacks, and the delay varied with the rate at which information accrued. Embryos started hatching sooner in response to stimuli with shorter cycles but sampled fewer cycles (less information) of longer-cycle stimuli before hatching. This flexible sampling is consistent with embryos balancing a trade-off between the value and cost of information.


Assuntos
Anuros/fisiologia , Sinais (Psicologia) , Embrião não Mamífero/fisiologia , Reação de Fuga/fisiologia , Percepção/fisiologia , Vibração , Animais , Serpentes
4.
J Exp Biol ; 209(Pt 8): 1376-84, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16574797

RESUMO

The embryos of red-eyed treefrogs, Agalychnis callidryas, use vibrations transmitted through their arboreal egg clutch to cue escape hatching behavior when attacked by egg-eating snakes. Hatching early increases the risk of predation in the water, so embryos should avoid it unless they are in danger. We exposed egg clutches to intermittent vibrations with different combinations of vibration duration and spacing to examine the role of simple temporal pattern cues in the escape hatching response. Stimuli were bursts of synthetic white noise from 0 to 100 Hz, including the range of frequencies with substantial energy in snake attacks, and had approximately rectangular amplitude envelopes. Embryos hatched in response to a small range of temporal patterns and not in response to many others, rather than hatching to most vibrations except for certain patterns perceived as safe. Neither cycle length nor duty cycle predicted hatching response, except at extreme values where no hatching occurred; the highest energy stimuli elicited little or no hatching. Both vibration duration and inter-vibration interval strongly affected the hatching response. The highest levels of hatching were to durations of 0.5 s combined with intervals of 1.5-2.5 s, and hatching decreased gradually with increasing difference of either duration or interval from these most effective stimuli. Vibration duration and interval appear to function as two necessary elements of a composite cue, rather than as redundant cues. This increases response specificity and reduces the range of stimuli that elicit hatching, likely reducing the chance of hatching unnecessarily in a benign disturbance. Vibration-cued hatching in A. callidryas embryos offers an opportunity to experimentally assess the behavioral decision rules underlying an effective and costly anti-predator defense.


Assuntos
Anuros/embriologia , Anuros/fisiologia , Sinais (Psicologia) , Embrião não Mamífero/fisiologia , Reação de Fuga/fisiologia , Vibração , Animais , Óvulo , Comportamento Predatório/fisiologia , Medição de Risco , Serpentes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA