RESUMO
Two pulses of 17beta-estradiol (10 microg) are commonly used to increase hippocampal CA1 apical dendritic spine density and alter spatial performance in ovariectomized (OVX) female rats, but rarely are the measures combined. The goal of this study was to use this two-pulse injection protocol repeatedly with intervening wash-out periods in the same rats to: 1) measure spatial ability using different tasks that require hippocampal function and 2) determine whether ovarian hormone depletion for an extended 10-week period reduces 17beta-estradiol's effectiveness in elevating CA1 apical dendritic spine density. Results showed that two injections of 10 microg 17beta-estradiol (72 and 48 h prior to testing and timed to maximize CA1 apical spine density at behavioral assessment) corresponded to improved spatial memory performance on object placement. In contrast, two injections of 5 microg 17beta-estradiol facilitated spatial learning on the water maze compared to rats given two injections of 10 microg 17beta-estradiol or the sesame oil vehicle. Neither 17beta-estradiol dose altered Y-maze performance. As expected, the intermittent two-pulse injection protocol increased CA1 apical spine density, but 10 weeks of OVX without estradiol treatment decreased the effectiveness of 10 microg 17beta-estradiol to increase CA1 apical spine density. Moreover, two pulses of 5 microg 17beta-estradiol injected intermittently failed to alter CA1 apical spine density and decreased basal spine density. These results demonstrate that extended time without ovarian hormones reduces 17beta-estradiol's effectiveness to increase CA1 apical spine density. Collectively, these findings highlight the complex interactions among estradiol, CA1 spine density/morphology, and task requirements, all of which contribute to behavioral outcomes.