Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Theor Biol ; 483: 109991, 2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31487497

RESUMO

Heterogeneity plays an important role in the emergence, persistence and control of infectious diseases. Metapopulation models are often used to describe spatial heterogeneity, and the transition from random- to heterogeneous-mixing is made by incorporating the interaction, or coupling, within and between subpopulations. However, such couplings are difficult to measure explicitly; instead, their action through the correlations between subpopulations is often all that can be observed. We use moment-closure methods to investigate how the coupling and resulting correlation are related, considering systems of multiple identical interacting populations on highly symmetric complex networks: the complete network, the k-regular tree network, and the star network. We show that the correlation between the prevalence of infection takes a relatively simple form and can be written in terms of the coupling, network parameters and epidemiological parameters only. These results provide insight into the effect of metapopulation network structure on endemic disease dynamics, and suggest that detailed case-reporting data alone may be sufficient to infer the strength of between population interaction and hence lead to more accurate mathematical descriptions of infectious disease behaviour.


Assuntos
Doenças Transmissíveis/epidemiologia , Doenças Endêmicas , Dinâmica Populacional , Humanos , Cadeias de Markov , Modelos Biológicos , Análise Numérica Assistida por Computador , Processos Estocásticos
2.
Epidemics ; 26: 58-67, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30213654

RESUMO

It is increasingly apparent that heterogeneity in the interaction between individuals plays an important role in the dynamics, persistence, evolution and control of infectious diseases. In epidemic modelling two main forms of heterogeneity are commonly considered: spatial heterogeneity due to the segregation of populations and heterogeneity in risk at the same location. The transition from random-mixing to heterogeneous-mixing models is made by incorporating the interaction, or coupling, within and between subpopulations. However, such couplings are difficult to measure explicitly; instead, their action through the correlations between subpopulations is often all that can be observed. Here, using moment-closure methodology supported by stochastic simulation, we investigate how the coupling and resulting correlation are related. We focus on the simplest case of interactions, two identical coupled populations, and show that for a wide range of parameters the correlation between the prevalence of infection takes a relatively simple form. In particular, the correlation can be approximated by a logistic function of the between population coupling, with the free parameter determined analytically from the epidemiological parameters. These results suggest that detailed case-reporting data alone may be sufficient to infer the strength of between population interaction and hence lead to more accurate mathematical descriptions of infectious disease behaviour.


Assuntos
Doenças Transmissíveis/epidemiologia , Modelos Biológicos , Epidemias , Humanos , Cadeias de Markov , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA