Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Anesth Analg Crit Care ; 1(1): 20, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37386658

RESUMO

Ex situ heart perfusion (ESHP) has been developed to decrease cold ischemia time and allow metabolic assessment of donor hearts prior to transplantation. Current clinical ESHP systems preserve the heart in an unloaded condition and only evaluate the cardiac metabolic profile. In this pilot study we performed echocardiographic functional assessment using two alternative systems for left ventricular (LV) loading: pump supported afterload working mode (SAM) and passive afterload working modes (PAM). Six hearts were procured from male Yorkshire pigs. During cold ischemia, hearts were mounted on our custom made ESHP circuit and a 3D-printed enclosure for the performance of echocardiography with a standard TEE probe. Following perfusion with Langherdorf mode of the unloaded heart, the system was switched into different working modes to allow LV loading and functional assessment: pump supported (SAM) and passive (PAM). Echocardiographic assessment of left ventricular function in the donor hearts was performed in vivo and at 1 h of ESHP with SAM, after 4.5 h with PAM and after 5.5 h with SAM. We obtained good quality epicardial echocardiographic images at all time points allowing a comprehensive LV systolic assessment. All indices showed a decrease in LV systolic function throughout the trial with the biggest drop after heart harvesting. We demonstrated the feasibility of echocardiographic functional assessment during ESHP and two different working modes. The expected LV systolic dysfunction consisted of a reduction in EF, FAC, FS, and strain throughout the experiment with the most significant decrease after harvesting.

2.
J Cardiothorac Vasc Anesth ; 35(1): 208-215, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32732098

RESUMO

OBJECTIVE: Currently available 3-dimensional (3D) modeling and printing techniques allow for the creation of patient-specific models based on 3D medical imaging data. The authors hypothesized that a low-cost, patient-specific, cardiac computed tomography-based phantom, created using desktop 3D printing and casting, would have comparable image quality, accuracy, and usability to an existing commercially available echocardiographic phantom. DESIGN: Blinded comparative study. SETTING: Simulation laboratory at a single academic institution. PARTICIPANTS: Voluntary cardiac anesthesiologists at a single academic institution. INTERVENTIONS: Stage 1 of the study consisted of an online questionnaire in which a set of basic transesophageal echocardiography (TEE) views obtained from the 3D printed phantom and commercial phantom were presented to participants, who had to identify the views and evaluate their fidelity to clinical images on a Likert scale. In stage 2, participants performed an unblinded basic TEE examination on both phantoms. MEASUREMENTS AND MAIN RESULTS: The time needed to acquire each basic view was recorded. Overall usability of the phantoms was assessed through a questionnaire. The participants could recognize most of the views. Fidelity ratings for both phantoms were similar (p < 0.05), with the exception of a midesophageal 2-chamber view that was observed better on the 3D printed phantom. The time required to obtain the views was shorter for the 3D printed phantom, although not statistically significant for most views. The overall user experience was better for the 3D phantom for all categories examined (p < 0.05). CONCLUSIONS: The study suggested that a 3D-printed TEE phantom is comparable with the commercially available one with good usability.


Assuntos
Ecocardiografia Tridimensional , Ecocardiografia Transesofagiana , Humanos , Imagens de Fantasmas , Impressão Tridimensional , Tomografia Computadorizada por Raios X
3.
Transplantation ; 104(9): 1890-1898, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32826843

RESUMO

BACKGROUND: Ex situ heart perfusion (ESHP) limits ischemic periods and enables continuous monitoring of donated hearts; however, a validated assessment method to predict cardiac performance has yet to be established. We compare biventricular contractile and metabolic parameters measured during ESHP to determine the best evaluation strategy to estimate cardiac function following transplantation. METHODS: Donor pigs were assigned to undergo beating-heart donation (n = 9) or donation after circulatory death (n = 8) induced by hypoxia. Hearts were preserved for 4 hours with ESHP while invasive and noninvasive (NI) biventricular contractile, and metabolic assessments were performed. Following transplantation, hearts were evaluated at 3 hours of reperfusion. Spearman correlation was used to determine the relationship between ESHP parameters and posttransplant function. RESULTS: We performed 17 transplants; 14 successfully weaned from bypass (beating-heart donation versus donation after circulatory death; P = 0.580). Left ventricular invasive preload recruitable stroke work (PRSW) (r = 0.770; P = 0.009), NI PRSW (r = 0.730; P = 0.001), and NI maximum elastance (r = 0.706; P = 0.002) strongly correlated with cardiac index (CI) following transplantation. Right ventricular NI PRSW moderately correlated to CI following transplantation (r = 0.688; P = 0.003). Lactate levels were weakly correlated with CI following transplantation (r = -0.495; P = 0.043). None of the echocardiography measurements correlated with cardiac function following transplantation. CONCLUSIONS: Left ventricular functional parameters, especially ventricular work and reserve, provided the best estimation of myocardial performance following transplantation. Furthermore, simple NI estimates of ventricular function proved useful in this setting. Right ventricular and metabolic measurements were limited in their ability to correlate with myocardial recovery. This emphasizes the need for an ESHP platform capable of assessing myocardial contractility and suggests that metabolic parameters alone do not provide a reliable evaluation.


Assuntos
Transplante de Coração/métodos , Preservação de Órgãos/métodos , Perfusão , Doadores de Tecidos , Função Ventricular Esquerda/fisiologia , Animais , Ecocardiografia , Masculino , Contração Miocárdica , Miocárdio/metabolismo , Suínos
4.
PLoS One ; 13(6): e0191664, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912877

RESUMO

METHODS: Anonymized CT DICOM data was segmented to create a 3D model of the lumbar spine. The 3D model was modified, placed inside a digitally designed housing unit and fabricated on a desktop 3D printer using polylactic acid (PLA) filament. The model was filled with an echogenic solution of gelatin with psyllium fiber. Twenty-two staff anesthesiologists performed a spinal and epidural on the 3D printed simulator and a commercially available Simulab phantom. Participants evaluated the tactile and ultrasound imaging fidelity of both phantoms via Likert-scale questionnaire. RESULTS: The 3D printed neuraxial phantom cost $13 to print and required 25 hours of non-supervised printing and 2 hours of assembly time. The 3D printed phantom was found to be less realistic to surface palpation than the Simulab phantom due to fragility of the silicone but had significantly better fidelity for loss of resistance, dural puncture and ultrasound imaging than the Simulab phantom. CONCLUSION: Low-cost neuraxial phantoms with fidelity comparable to commercial models can be produced using CT data and low-cost infrastructure consisting of FLOS software and desktop 3D printers.


Assuntos
Anestesia , Anestesiologia/educação , Vértebras Lombares/anatomia & histologia , Modelos Anatômicos , Imagens de Fantasmas , Medicina de Precisão/métodos , Impressão Tridimensional , Humanos , Tomografia Computadorizada por Raios X
6.
Anesth Analg ; 127(3): e36-e39, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29505446

RESUMO

Ex vivo heart perfusion (EVHP) is a new technology aimed at decreasing cold ischemia time and evaluating cardiac function before transplanting a donor heart. In an experimental EVHP swine model, we tested a 3D-printed custom-made set-up to perform surface echocardiography on an isolated beating heart during left ventricular loading. The views obtained at any time point were equivalent to standard transesophageal and transthoracic views. A decrease in left ventricular function during EVHP was observed in all experiments.


Assuntos
Ponte Cardiopulmonar/métodos , Ecocardiografia Transesofagiana/métodos , Impressão Tridimensional , Função Ventricular Esquerda/fisiologia , Animais , Masculino , Suínos
7.
Anaesthesiol Intensive Ther ; 49(3): 189-197, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28712105

RESUMO

BACKGROUND: Flexible bronchoscopy is a fundamental procedure in anaesthesia and critical care medicine. Although learning this procedure is a complex task, the use of simulation-based training provides significant advantages, such as enhanced patient safety. Access to bronchoscopy simulators may be limited in low-resource settings. We have developed a low-cost 3D-printed bronchoscopy training model. METHODS: A parametric airway model was obtained from an online medical model repository and fabricated using a low-cost 3D printer. The participating physicians had no prior bronchoscopy experience. Participants received a 30-minute lecture on flexible bronchoscopy and were administered a 15-item pre-test questionnaire on bronchoscopy. Afterwards, participants were instructed to perform a series of predetermined bronchoscopy tasks on the 3D printed simulator on 4 consecutive occasions. The time needed to perform the tasks and the quality of task performance (identification of bronchial anatomy, technique, dexterity, lack of trauma) were recorded. Upon completion of the simulator tests, participants were administered the 15-item questionnaire (post-test) once again. Participant satisfaction data on the perceived usefulness and accuracy of the 3D model were collected. A statistical analysis was performed using the t-test. Data are reported as mean values (± standard deviation). RESULTS: The time needed to complete all tasks was 152.9 ± 71.5 sec on the 1st attempt vs. 98.7 ± 40.3 sec on the 4th attempt (P = 0.03). Likewise, the quality of performance score improved from 8.3 ± 6.7 to 18.2 ± 2.5 (P < 0.0001). The average number of correct answers in the questionnaire was 6.8 ± 1.9 pre-test and 13.3 ± 3.1 post-test (P < 0.0001). Participants reported a high level of satisfaction with the perceived usefulness and accuracy of the model. CONCLUSIONS: We developed a 3D-printed model for bronchoscopy training. This model improved trainee performance and may represent a valid, low-cost bronchoscopy training tool.


Assuntos
Broncoscopia/educação , Modelos Anatômicos , Impressão Tridimensional , Treinamento por Simulação/métodos , Competência Clínica , Custos e Análise de Custo , Avaliação Educacional , Humanos , Médicos/normas , Treinamento por Simulação/economia , Inquéritos e Questionários , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA