Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(12): e1009748, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965250

RESUMO

Eukaryotic cells partition a wide variety of important materials and processes into biomolecular condensates-phase-separated droplets that lack a membrane. In addition to nonspecific electrostatic or hydrophobic interactions, phase separation also depends on specific binding motifs that link together constituent molecules. Nevertheless, few rules have been established for how these ubiquitous specific, saturating, motif-motif interactions drive phase separation. By integrating Monte Carlo simulations of lattice-polymers with mean-field theory, we show that the sequence of heterotypic binding motifs strongly affects a polymer's ability to phase separate, influencing both phase boundaries and condensate properties (e.g. viscosity and polymer diffusion). We find that sequences with large blocks of single motifs typically form more inter-polymer bonds, which promotes phase separation. Notably, the sequence of binding motifs influences phase separation primarily by determining the conformational entropy of self-bonding by single polymers. This contrasts with systems where the molecular architecture primarily affects the energy of the dense phase, providing a new entropy-based mechanism for the biological control of phase separation.


Assuntos
Fenômenos Biofísicos/fisiologia , Células Eucarióticas/fisiologia , Conformação Molecular , Polímeros , Animais , Biologia Computacional , Entropia , Interações Hidrofóbicas e Hidrofílicas , Espaço Intracelular/metabolismo , Modelos Biológicos , Método de Monte Carlo , Polímeros/química , Polímeros/metabolismo , Ligação Proteica/fisiologia , Viscosidade
2.
Proc Natl Acad Sci U S A ; 111(24): 8809-14, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24927534

RESUMO

The ParABS system mediates chromosome segregation and plasmid partitioning in many bacteria. As part of the partitioning mechanism, ParB proteins form a nucleoprotein complex at parS sites. The biophysical basis underlying ParB-DNA complex formation and localization remains elusive. Specifically, it is unclear whether ParB spreads in 1D along DNA or assembles into a 3D protein-DNA complex. We show that a combination of 1D spreading bonds and a single 3D bridging bond between ParB proteins constitutes a minimal model for a condensed ParB-DNA complex. This model implies a scaling behavior for ParB-mediated silencing of parS-flanking genes, which we confirm to be satisfied by experimental data from P1 plasmids. Furthermore, this model is consistent with experiments on the effects of DNA roadblocks on ParB localization. Finally, we show experimentally that a single parS site is necessary and sufficient for ParB-DNA complex formation in vivo. Together with our model, this suggests that ParB binding to parS triggers a conformational switch in ParB that overcomes a nucleation barrier. Conceptually, the combination of spreading and bridging bonds in our model provides a surface tension ensuring the condensation of the ParB-DNA complex, with analogies to liquid-like compartments such as nucleoli in eukaryotes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Cromossomos Bacterianos/química , DNA Bacteriano/química , Algoritmos , Fenômenos Fisiológicos Bacterianos , Sítios de Ligação , Proteínas de Ligação a DNA/química , Inativação Gênica , Genômica , Proteínas de Fluorescência Verde/química , Cinética , Método de Monte Carlo , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Software , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA