Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 38(8): 1770-1783, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31017693

RESUMO

The medaka extended one-generation reproduction test (MEOGRT) is a tier-2 study in the US Environmental Protection Agency's Endocrine Disruptor Screening Program and a level-5 study in the Organisation for Economic Co-operation and Development's conceptual framework. Integrating nonspecific apical and endocrine-specific mechanistic endpoints, results of a MEOGRT can be used, with other data, in a weight-of-evidence evaluation to establish a dose-response relationship for risk assessment and identify potential causal relationships between an endocrine mode of action and adverse effects. The MEOGRT test design was used to evaluate the multigenerational effects of the antimicrobial agent triclosan. Japanese medaka were exposed to nominal concentrations of 1.4, 2.8, 5.6, 11, and 23 µg/L triclosan and a dilution water control starting with adult medaka (F0) through hatch in the second generation (F2). No consistent or concentration-related responses occurred in the 182-d test that suggested an endocrine-mediated effect. There were no impacts on hepatic vitellogenin, secondary sex characteristics, or sex ratio that were linked to an adverse reproductive outcome. Histopathological responses were consistent with a toxic or stress effect, particularly when considered in context with observed reductions in growth. The overall population-relevant no-observed-effect concentration was 11 µg/L based on effects on growth. The results of the present study support a previously conducted weight-of-evidence evaluation concluding that triclosan does not act as an agonist or antagonist within estrogen, androgen, thyroid, or steroidogenic pathways. Environ Toxicol Chem 2019;38:1770-1783. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Disruptores Endócrinos/toxicidade , Sistema Endócrino/efeitos dos fármacos , Oryzias/fisiologia , Reprodução/efeitos dos fármacos , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Sistema Endócrino/metabolismo , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Organização para a Cooperação e Desenvolvimento Econômico , Oryzias/metabolismo , Caracteres Sexuais , Testes de Toxicidade , Estados Unidos , United States Environmental Protection Agency , Vitelogeninas/metabolismo
2.
Environ Toxicol Chem ; 38(1): 12-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30570782

RESUMO

In 2007 the United States National Research Council (NRC) published a vision for toxicity testing in the 21st century that emphasized the use of in vitro high-throughput screening (HTS) methods and predictive models as an alternative to in vivo animal testing. In the present study we examine the state of the science of HTS and the progress that has been made in implementing and expanding on the NRC vision, as well as challenges to implementation that remain. Overall, significant progress has been made with regard to the availability of HTS data, aggregation of chemical property and toxicity information into online databases, and the development of various models and frameworks to support extrapolation of HTS data. However, HTS data and associated predictive models have not yet been widely applied in risk assessment. Major barriers include the disconnect between the endpoints measured in HTS assays and the assessment endpoints considered in risk assessments as well as the rapid pace at which new tools and models are evolving in contrast with the slow pace at which regulatory structures change. Nonetheless, there are opportunities for environmental scientists and policymakers alike to take an impactful role in the ongoing development and implementation of the NRC vision. Six specific areas for scientific coordination and/or policy engagement are identified. Environ Toxicol Chem 2019;38:12-26. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Medição de Risco , Animais , Poluentes Ambientais/análise , Humanos , Modelos Teóricos , Testes de Toxicidade
3.
Environ Toxicol Chem ; 31(8): 1911-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22639379

RESUMO

Cyclic volatile methyl siloxanes (cVMS) are important consumer materials that are used in personal care products and industrial applications. These compounds have gained increased attention in recent years following the implementation of chemical legislation programs worldwide. Industry-wide research programs are being conducted to characterize the persistence, bioaccumulation, and toxicity (PBT) properties of cVMS materials. As part of this larger effort, a tissue-based risk assessment was performed to further inform the regulatory decision-making process. Measured tissue concentrations of cVMS compounds in fish and benthic invertebrates are compared with critical target lipid body burdens (CTLBBs) as estimated with the target lipid model (TLM) to evaluate risk. Acute and chronic toxicity data for cVMS compounds are compared with data for nonpolar organic chemicals to validate application of the TLM in this effort. The analysis was extended to estimate the contribution from metabolites to the overall cVMS-derived tissue residues using a food chain model calibrated to laboratory and field data. Concentrations of cVMS materials in biota from several trophic levels (e.g., invertebrates, fish) are well below the estimated CTLBBs associated with acute and chronic effects. This analysis, when combined with the limited biomagnification potential for cVMS compounds that was observed in the field, suggests that there is little risk of adverse effects from cVMS materials under present-day emission levels.


Assuntos
Monitoramento Ambiental/métodos , Peixes , Invertebrados/química , Invertebrados/efeitos dos fármacos , Siloxanas/análise , Siloxanas/toxicidade , Aminobenzoatos/química , Animais , Biotina/análogos & derivados , Biotina/química , Cadeia Alimentar , Sedimentos Geológicos/análise , Modelos Biológicos , Modelos Estatísticos , Medição de Risco , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA