Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21103, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036628

RESUMO

Technological innovations that improve the speed, scale, reproducibility, and accuracy of monitoring surveys will allow for a better understanding of the global decline in tropical reef health. The DiveRay, a diver-operated hyperspectral imager, and a complementary machine learning pipeline to automate the analysis of hyperspectral imagery were developed for this purpose. To evaluate the use of a hyperspectral imager underwater, the automated classification of benthic taxa in reef communities was tested. Eight reefs in Guam were surveyed and two approaches for benthic classification were employed: high taxonomic resolution categories and broad benthic categories. The results from the DiveRay surveys were validated against data from concurrently conducted photoquadrat surveys to determine their accuracy and utility as a proxy for reef surveys. The high taxonomic resolution classifications did not reliably predict benthic communities when compared to those obtained by standard photoquadrat analysis. At the level of broad benthic categories, however, the hyperspectral results were comparable to those of the photoquadrat analysis. This was particularly true when estimating scleractinian coral cover, which was accurately predicted for six out of the eight sites. The annotation libraries generated for this study were insufficient to train the model to fully account for the high biodiversity on Guam's reefs. As such, prediction accuracy is expected to improve with additional surveying and image annotation. This study is the first to directly compare the results from underwater hyperspectral scanning with those from traditional photoquadrat survey techniques across multiple sites with two levels of identification resolution and different degrees of certainty. Our findings show that dependent on a well-annotated library, underwater hyperspectral imaging can be used to quickly, repeatedly, and accurately monitor and map dynamic benthic communities on tropical reefs using broad benthic categories.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Imageamento Hiperespectral , Reprodutibilidade dos Testes
2.
PLoS One ; 17(7): e0271438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867665

RESUMO

Successful recruitment of invertebrate larvae to reef substrates is essential to the health of tropical coral reef ecosystems and to their capacity to recover from disturbances. Crustose calcifying red algae (CCRA) are a species rich group of seaweeds that have been identified as important recruitment substrates for scleractinian corals. Most studies on the settlement preference of coral larvae on CCRA use morphological species identifications that can lead to unreliable species identification and do not allow for examining species-specific interactions between coral larvae and CCRA. Accurate identifications of CCRA species is important for coral reef restoration and management to assess CCRA community composition and to detect CCRA species that are favored as coral recruitment substrates. In this study, DNA sequence analysis, was used to identify CCRA species to (1) investigate the species richness and community composition of CCRA on experimental coral recruitment tiles and (2) assess if the coral Acropora surculosa preferred any of these CCRA species as recruitment substrates. The CCRA community assemblages on the coral recruitment tiles was species-rich, comprising 27 distinct CCRA species of the orders Corallinales and Peyssonneliales which constitute new species records for Guam. Lithophylloideae sp. 1 (Corallinales) was the CCRA species that was significantly favored by coral larvae as a recruitment substrate. Lithophylloideae sp. 1 showed to hold a valuable ecological role for coral larval recruitment preference. Lithophylloideae sp. 1 had the highest benthic cover on the recruitment tiles and contained most A. surculosa recruits. DNA barcoding revealed a high taxonomic diversity of CCRA species on a microhabitat scale and provided detailed insight into the species-specific ecological interactions between CCRA and corals. With a steady decline in coral cover, detailed information on species interactions that drive reef recovery is valuable for the planning of marine management actions and restoration efforts.


Assuntos
Antozoários , Rodófitas , Animais , Recifes de Corais , Ecossistema , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA