Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Radiology ; 298(3): 578-586, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33464179

RESUMO

Background Clinical guidelines recommend the use of established T2 mapping sequences to detect and quantify myocarditis and edema, but T2 mapping is performed in two dimensions with limited coverage and repetitive breath holds. Purpose To assess the reproducibility of an accelerated free-breathing three-dimensional (3D) whole-heart T2 MRI mapping sequence in phantoms and participants without a history of cardiac disease and to investigate its clinical performance in participants with suspected myocarditis. Materials and Methods Eight participants (three women, mean age, 31 years ± 4 [standard deviation]; cohort 1) without a history of cardiac disease and 25 participants (nine women, mean age, 45 years ± 17; cohort 2) with clinically suspected myocarditis underwent accelerated free-breathing 3D whole-heart T2 mapping with 100% respiratory scanning efficiency at 1.5 T. The participants were enrolled from November 2018 to August 2020. Three repeated scans were performed on 2 separate days in cohort 1. Segmental variations in T2 relaxation times of the left ventricular myocardium were assessed, and intrasession and intersession reproducibility were measured. In cohort 2, segmental myocardial T2 values, detection of focal inflammation, and map quality were compared with those obtained from clinical breath-hold two-dimensional (2D) T2 mapping. Statistical differences were assessed using the nonparametric Mann-Whitney and Kruskal-Wallis tests, whereas the paired Wilcoxon signed-rank test was used to assess subjective scores. Results Whole-heart T2 maps were acquired in a mean time of 6 minutes 53 seconds ± 1 minute 5 seconds at 1.5 mm3 resolution. Breath-hold 2D and free-breathing 3D T2 mapping had similar intrasession (mean T2 change of 3.2% and 2.3% for 2D and 3D, respectively) and intersession (4.8% and 4.9%, respectively) reproducibility. The two T2 mapping sequences showed similar map quality (P = .23, cohort 2). Abnormal myocardial segments were identified with confidence (score 3) in 14 of 25 participants (56%) with 3D T2 mapping and only in 10 of 25 participants (40%) with 2D T2 mapping. Conclusion High-spatial-resolution three-dimensional (3D) whole-heart T2 mapping shows high intrasession and intersession reproducibility and helps provide T2 myocardial characterization in agreement with clinical two-dimensional reference, while enabling 3D assessment of focal disease with higher confidence. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Friedrich in this issue.


Assuntos
Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Miocardite/diagnóstico por imagem , Adulto , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos Testes
2.
Magn Reson Med ; 82(1): 312-325, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30896049

RESUMO

PURPOSE: To develop a motion-corrected 3D flow-insensitive imaging approach interleaved T2 prepared-inversion recovery (iT2 prep-IR) for simultaneous lumen and wall visualization of the great thoracic vessels and cardiac structures. METHODS: A 3D flow-insensitive approach for simultaneous cardiovascular lumen and wall visualization (iT2 prep) has been previously proposed. This approach requires subject-dependent weighted subtraction to completely null the arterial blood signal in the black-blood volume. Here, we propose an (T2 prep-IR) approach to improve wall visualization and remove need for weighted subtraction. The proposed sequence is based on the acquisition and direct subtraction of 2 interleaved 3D whole-heart data sets acquired with and without T2 prep-IR preparation. Image navigators are acquired before data acquisition to enable 2D translational and 3D non-rigid motion correction allowing 100% respiratory scan efficiency. The proposed approach was evaluated in 10 healthy subjects and compared with the conventional 2D double inversion recovery (DIR) sequence and the 3D iT2 prep sequence. Additionally, 5 patients with congenital heart disease were acquired to test the clinical feasibility of the proposed approach. RESULTS: The proposed iT2 prep-IR sequence showed improved blood nulling compared to both DIR and iT2 prep techniques in terms of SNR (SNRblood = 6.9, 12.2, and 18.2, respectively) and contrast-to-noise-ratio (CNRmyoc-blood = 28.4, 15.4, and 15.3, respectively). No statistical difference was observed between iT2 prep-IR, iT2 prep and DIR atrial and ventricular wall thickness quantification. CONCLUSION: The proposed interleaved T2 prep-IR sequence enables the simultaneous lumen and wall visualization of cardiac structures and shows promising results in terms of SNR, CNR, and wall thickness measurement.


Assuntos
Técnicas de Imagem Cardíaca/métodos , Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos , Angiografia por Ressonância Magnética/métodos , Adulto , Algoritmos , Feminino , Coração/fisiologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA