RESUMO
Anti-VEGF (vascular endothelial growth factor) treatment improves response rates, but not progression-free or overall survival in advanced breast cancer. It has been suggested that subgroups of patients may benefit from this treatment; however, the effects of adding anti-VEGF treatment to a standard chemotherapy regimen in breast cancer patients are not well studied. Understanding the effects of the anti-vascular treatment on tumor vasculature may provide a selection of patients that can benefit. The aim of this study was to study the vascular effect of bevacizumab using clinical dynamic contrast-enhanced MRI (DCE-MRI). A total of 70 women were randomized to receive either chemotherapy alone or chemotherapy with bevacizumab for 25 weeks. DCE-MRI was performed at baseline and at 12 and 25 weeks, and in addition 25 of 70 patients agreed to participate in an early MRI after one week. Voxel-wise pharmacokinetic analysis was performed using semi-quantitative methods and the extended Tofts model. Vascular architecture was assessed by calculating the fractal dimension of the contrast-enhanced images. Changes during treatment were compared with baseline and between the treatment groups. There was no significant difference in tumor volume at any point; however, DCE-MRI parameters revealed differences in vascular function and vessel architecture. Adding bevacizumab to chemotherapy led to a pronounced reduction in vascular DCE-MRI parameters, indicating decreased vascularity. At 12 and 25 weeks, the difference between the treatment groups is severely reduced.
RESUMO
BACKGROUND: Several imaging modalities are used in the early work-up of patients with gastrointestinal stromal tumor (GIST) receiving tyrosine kinase inhibitor (TKI) treatment and there is a need to establish whether they provide similar or complimentary information. PURPOSE: To compare 18F-fluorodeoxyglucose positron emission tomography (FDG PET), computed tomography (CT) and magnetic resonance imaging (MRI) as early predictors of three-month outcomes for patients with GIST receiving TKI treatment. MATERIAL AND METHODS: Thirty-five patients with advanced GIST were prospectively included between February 2011 and June 2017. FDG PET, contrast-enhanced CT (CECT), and MRI were performed before and early after onset of TKI treatment (range 8-18 days). Early response was categorized according to mRECIST (CT), the Choi criteria (CECT), and PERCIST (FDG PET/CT). For MRI, volumetry from T2-weighted images and change in apparent diffusion coefficient (ADC) from diffusion-weighted imaging was used. The reference standard for early assessment was the three-month mRECIST evaluation based on CT. At three months, both stable disease (SD) and partial response (PR) were categorized as response. Clinical usefulness was defined as agreement between early and three-month assessment. RESULTS: At the three-month assessment, 91% (32/35) were responders, 37% (13/35) PR, 54% (19/35) SD, and 9% (3/35) had progressive disease (PD). Early assessment correctly predicted three-month response in 93% (27/29) for MRI, 80% (28/35) for PERCIST, 74% (26/35) for Choi, and 23% (8/35) for mRECIST. Six patients had non-FDG-avid tumors. For the FDG-avid tumors, PET/CT correctly predicted three-month response in 97% (28/29). CONCLUSION: MRI was superior to CECT for early assessment of TKI-treatment response in GIST. If the tumor was FDG-avid, PET and MRI were equally good. Changes in functional parameters were superior to changes in longest tumor diameter (mRECIST).