Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Front Immunol ; 12: 690348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305923

RESUMO

The hurdles to effective blood stage malaria vaccine design include immune evasion tactics used by the parasite such as redundant invasion pathways and antigen variation among circulating parasite strains. While blood stage malaria vaccine development primarily focuses on eliciting optimal humoral responses capable of blocking erythrocyte invasion, clinically-tested Plasmodium falciparum (Pf) vaccines have not elicited sterile protection, in part due to the dramatically high levels of antibody needed. Recent development efforts with non-redundant, conserved blood stage antigens suggest both high antibody titer and rapid antibody binding kinetics are important efficacy factors. Based on the central role of helper CD4 T cells in development of strong, protective immune responses, we systematically analyzed the class II epitope content in five leading Pf blood stage antigens (RH5, CyRPA, RIPR, AMA1 and EBA175) using in silico, in vitro, and ex vivo methodologies. We employed in silico T cell epitope analysis to enable identification of 67 HLA-restricted class II epitope clusters predicted to bind a panel of nine HLA-DRB1 alleles. We assessed a subset of these for HLA-DRB1 allele binding in vitro, to verify the in silico predictions. All clusters assessed (40 clusters represented by 46 peptides) bound at least two HLA-DR alleles in vitro. The overall epitope prediction to in vitro HLA-DRB1 allele binding accuracy was 71%. Utilizing the set of RH5 class II epitope clusters (10 clusters represented by 12 peptides), we assessed stimulation of T cells collected from HLA-matched RH5 vaccinees using an IFN-γ T cell recall assay. All clusters demonstrated positive recall responses, with the highest responses - by percentage of responders and response magnitude - associated with clusters located in the N-terminal region of RH5. Finally, a statistically significant correlation between in silico epitope predictions and ex vivo IFN-γ recall response was found when accounting for HLA-DR matches between the epitope predictions and donor HLA phenotypes. This is the first comprehensive analysis of class II epitope content in RH5, CyRPA, RIPR, AMA1 and EBA175 accompanied by in vitro HLA binding validation for all five proteins and ex vivo T cell response confirmation for RH5.


Assuntos
Antígenos de Protozoários/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Epitopos de Linfócito T/imunologia , Vacinas Antimaláricas/farmacologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/parasitologia , Proteínas de Transporte/imunologia , Proteínas de Transporte/farmacologia , Antígenos HLA-DR/imunologia , Interações Hospedeiro-Parasita , Humanos , Interferon gama/metabolismo , Vacinas Antimaláricas/imunologia , Malária Falciparum/sangue , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/farmacologia
2.
Front Immunol ; 12: 684116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025684

RESUMO

Immunization with radiation-attenuated sporozoites (RAS) has been shown to protect against malaria infection, primarily through CD8 T cell responses, but protection is limited based on parasite strain. Therefore, while CD8 T cells are an ideal effector population target for liver stage malaria vaccine development strategies, such strategies must incorporate conserved epitopes that cover a large range of class I human leukocyte antigen (HLA) supertypes to elicit cross-strain immunity across the target population. This approach requires identifying and characterizing a wide range of CD8 T cell epitopes for incorporation into a vaccine such that coverage across a large range of class I HLA alleles is attained. Accordingly, we devised an experimental framework to identify CD8 T cell epitopes from novel and minimally characterized antigens found at the pre-erythrocytic stage of parasite development. Through in silico analysis we selected conserved P. falciparum proteins, using P. vivax orthologues to establish stringent conservation parameters, predicted to have a high number of T cell epitopes across a set of six class I HLA alleles representative of major supertypes. Using the decision framework, five proteins were selected based on the density and number of predicted epitopes. Selected epitopes were synthesized as peptides and evaluated for binding to the class I HLA alleles in vitro to verify in silico binding predictions, and subsequently for stimulation of human T cells using the Modular IMmune In-vitro Construct (MIMIC®) technology to verify immunogenicity. By combining the in silico tools with the ex vivo high throughput MIMIC platform, we identified 15 novel CD8 T cell epitopes capable of stimulating an immune response in alleles across the class I HLA panel. We recommend these epitopes should be evaluated in appropriate in vivo humanized immune system models to determine their protective efficacy for potential inclusion in future vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Fígado/parasitologia , Plasmodium falciparum/imunologia , Alelos , Animais , Simulação por Computador , Experimentação Humana , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/genética
3.
R I Med J (2013) ; 96(2): 19-21, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23641421

RESUMO

EpiVax, Inc., is an early-stage informatics and immunology biotechnology company in Providence, Rhode Island. It applies computational tools to harness immunity in three major areas: immunomodulation, biotherapeutic immunogenicity risk assessment and de-risking, and vaccine development. Immunotherapy, bio-better and vaccine candidates under development at EpiVax promise to improve the health outcomes of millions of people affected by devastating immune-related diseases.


Assuntos
Doenças Autoimunes/imunologia , Pesquisa Biomédica/tendências , Biologia Computacional , Descoberta de Drogas/tendências , Indústria Farmacêutica , Epitopos Imunodominantes/imunologia , Imunomodulação , Linfócitos T Reguladores/imunologia , Doenças Autoimunes/tratamento farmacológico , Autoimunidade , Desenho de Fármacos , Humanos , Rhode Island , Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA