Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Senses ; 38(5): 399-407, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23599218

RESUMO

For bumblebee colony survival, sugar responses are crucial as nectar is the main carbohydrate source and flower choice is likely determined by sugar composition. This study used a bioassay both with harnessed and with free-moving workers of the bumblebee Bombus terrestris to study the gustatory response to the 3 major plant sugars by both groups. In harnessed workers of B. terrestris, a concentration of 5.5% of fructose and glucose was required to induce the proboscis extension reflex in 50% of the workers, whereas for sucrose, a much higher concentration of 40% was needed. In contrast, free-moving workers given a choice between 30% glucose, 30% sucrose, 30% fructose, and water showed a strong preference for sucrose (66% of individuals) compared with 18% for glucose and 16% for fructose; water was never chosen. Familiarization with 30% fructose provoked a significant increase in preference toward fructose, indicating plasticity. In addition, by amputation of the tarsi, it was found that tarsi plays a role in the sugar response with especially the foreleg tarsi being involved in the response to fructose. Our results demonstrated that sugar response is different in free-moving versus harnessed bumblebee workers and that tarsi plays a role in sugar perception.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Carboidratos/farmacologia , Imobilização , Movimento/fisiologia , Percepção Gustatória/efeitos dos fármacos , Percepção Gustatória/fisiologia , Animais , Frutose/farmacologia
2.
Ecotoxicology ; 21(4): 973-92, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22350105

RESUMO

Neonicotinoid insecticides are successfully applied to control pests in a variety of agricultural crops; however, they may not only affect pest insects but also non-target organisms such as pollinators. This review summarizes, for the first time, 15 years of research on the hazards of neonicotinoids to bees including honey bees, bumble bees and solitary bees. The focus of the paper is on three different key aspects determining the risks of neonicotinoid field concentrations for bee populations: (1) the environmental neonicotinoid residue levels in plants, bees and bee products in relation to pesticide application, (2) the reported side-effects with special attention for sublethal effects, and (3) the usefulness for the evaluation of neonicotinoids of an already existing risk assessment scheme for systemic compounds. Although environmental residue levels of neonicotinoids were found to be lower than acute/chronic toxicity levels, there is still a lack of reliable data as most analyses were conducted near the detection limit and for only few crops. Many laboratory studies described lethal and sublethal effects of neonicotinoids on the foraging behavior, and learning and memory abilities of bees, while no effects were observed in field studies at field-realistic dosages. The proposed risk assessment scheme for systemic compounds was shown to be applicable to assess the risk for side-effects of neonicotinoids as it considers the effect on different life stages and different levels of biological organization (organism versus colony). Future research studies should be conducted with field-realistic concentrations, relevant exposure and evaluation durations. Molecular markers may be used to improve risk assessment by a better understanding of the mode of action (interaction with receptors) of neonicotinoids in bees leading to the identification of environmentally safer compounds.


Assuntos
Abelhas/efeitos dos fármacos , Monitoramento Ambiental/métodos , Imidazóis/toxicidade , Inseticidas/toxicidade , Nitrocompostos/toxicidade , Animais , Produtos Agrícolas/efeitos dos fármacos , Neonicotinoides , Polinização , Reprodução/efeitos dos fármacos , Medição de Risco , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica
3.
Nanotoxicology ; 6(5): 554-61, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21675822

RESUMO

We assessed lethal and sublethal side-effects of Ludox TMA silica nanoparticles on a terrestrial pollinator, Bombus terrestris (Linnaeus), via a dietary exposure. Dynamic light scattering analysis confirmed that silica Ludox TMA nanoparticles remained in suspension in the drinking sugar water. Exposure of bumblebee microcolonies during 7 weeks to the different nanoparticle concentrations (high: 34, 170 and 340 mg/l and low: 34 and 340 µg/l) did not cause worker mortality compared to the controls. Also no effect on the worker foraging behavior was observed after exposure to nanoparticles concentrations up to 340 µg/l. In contrast, the high concentrations (≥34 mg/l) resulted in a total loss of reproduction. Using histological analysis we confirmed severe midgut epithelial injury in intoxicated workers (≥34 mg/l). Despite the fact that these concentrations are much higher than the predicted environmental concentrations, precaution is still needed as information regarding their fate in the terrestrial environment and their potency to bioaccumulate and biomagnificate is lacking.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Análise de Variância , Animais , Abelhas , Comportamento Animal/efeitos dos fármacos , Histocitoquímica , Mucosa Intestinal/química , Nanopartículas/química , Tamanho da Partícula , Reprodução/efeitos dos fármacos , Dióxido de Silício/química
4.
Pest Manag Sci ; 67(5): 541-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21472971

RESUMO

BACKGROUND: This study was undertaken to identify the potential side effects of the novel naturalyte insecticide spinetoram in comparison with spinosad on the bumblebee Bombus terrestris L. The potential lethal effects together with the ecologically relevant sublethal effects on aspects of bumblebee reproduction and foraging behaviour were evaluated. Bumblebee workers were exposed via direct contact with wet and dry residues under laboratory conditions to spinetoram at different concentrations, starting from the maximum field recommended concentration (MFRC) and then different dilutions (1/10, 1/100, 1/1000 and 1/10 000 of the MFRC), and compared with spinosad. In addition, the side effects via oral exposure in supplemented sugar water were assessed. RESULTS: Direct contact of B. terrestris workers with wet residues of spinosad and spinetoram showed spinetoram to be approximately 52 times less toxic than spinosad, while exposure to dry residues of spinetoram was about 8 times less toxic than exposure to those of spinosad. Oral treatment for 72 h (acute) indicated that spinetoram is about 4 times less toxic to B. terrestris workers compared with spinosad, while exposure for a longer period (i.e. 11 weeks) showed spinetoram to be 24 times less toxic. In addition, oral exposure to the two spinosyns resulted in detrimental sublethal effects on bumblebee reproduction. The no observed effect concentration (NOEC) for spinosad was 1/1000 of the MFRC, and 1/100 of the MFRC for spinetoram. Comparison between the chronic exposure bioassays assessing the sublethal effects on nest reproduction, with and without allowing for foraging behaviour, showed that the respective NOEC values for spinosad and spinetoram were similar over the two bioassays, indicating that there were no adverse effects by either spinosyn on the foraging of B. terrestris workers. CONCLUSION: Overall, the present results indicate that the use of spinetoram is safer for bumblebees by direct contact and oral exposure than the use of spinosad, and therefore it can be applied safely in combination with B. terrestris. Another important conclusion is that the present data provide strong evidence that neither spinosyn has a negative effect on the foraging behaviour of these beneficial insects. However, before drawing final conclusions, spinetoram and spinosad should also be evaluated in more realistic field-related situations for the assessment of potentially deleterious effects on foraging behaviour with the use of queenright colonies of B. terrestris.


Assuntos
Abelhas/efeitos dos fármacos , Controle de Insetos/métodos , Inseticidas/toxicidade , Macrolídeos/toxicidade , Animais , Abelhas/fisiologia , Combinação de Medicamentos , Masculino , Reprodução/efeitos dos fármacos
5.
Pest Manag Sci ; 66(7): 786-93, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20309850

RESUMO

BACKGROUND: This project assessed the potential hazards of different classical and novel acaricides against an important non-target and beneficial insect for the pollination of wild flowers and cultivated crops, the bumblebee Bombus terrestris (L). Twenty-three acaricides used commercially in the control of phytophagous mites (Acari) were tested in greenhouses and/or the open field. Side effects included acute mortality and also sublethal effects on nest reproduction. The different compounds were administered in the laboratory via three different worst-case field scenario routes of exposure: dermal contact and orally via the drinking of treated sugar water and via treated pollen. The compounds were tested at their respective maximum field recommended concentration (MFRC), and, when strong lethal effects were observed, a dose-response assay with a dilution series of the MFRC was undertaken to calculate LC(50) values. RESULTS: From the different acaricide classes, several chemistries caused high levels of acute toxicity in bumblebee workers, especially bifenthrin and abamectin which resulted in 100% mortality by contact. In addition, several acaricides tested were found to have a detrimental effect on drone production. For oral exposures via treated sugar water, the dose-response assay showed the LC(50) values for abamectin, bifenazate, bifenthrin and etoxazole to be 1/15 MFRC (1.17 mg AI L(-1)), 1/10 MFRC (9.6 mg AI L(-1)), 1/83 MFRC (0.36 mg AI L(-1)) and 1/13 MFRC (4.4 mg AI L(-1)) respectively, indicating that their use should be carefully evaluated. CONCLUSION: Overall, the results suggest that most of the acaricides tested are compatible with bumblebees, with the exceptions of abamectin, bifenazate, bifenthrin and etoxazole. However, the risks also depended on the type of treatment. As a result, the sugar water treatment seems to present the worst-case situation of exposure, indicating that this approach is suitable for determining the hazards of pesticides against bumblebees. Finally, it is suggested that future tier testing under more field-related conditions is required for a final decision of their risks.


Assuntos
Acaricidas/toxicidade , Abelhas/efeitos dos fármacos , Acaricidas/efeitos adversos , Animais , Abelhas/fisiologia , Laboratórios , Dose Letal Mediana , Masculino , Reprodução/efeitos dos fármacos
6.
Ecotoxicology ; 19(1): 207-15, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19757031

RESUMO

Bombus terrestris bumblebees are important pollinators of wild flowers, and in modern agriculture they are used to guarantee pollination of vegetables and fruits. In the field it is likely that worker bees are exposed to pesticides during foraging. To date, several tests exist to assess lethal and sublethal side-effects of pesticides on bee survival, growth/development and reproduction. Within the context of ecotoxicology and insect physiology, we report the development of a new bioassay to assess the impact of sublethal concentrations on the bumblebee foraging behavior under laboratory conditions. In brief, the experimental setup of this behavior test consists of two artificial nests connected with a tube of about 20 cm and use of queenless micro-colonies of 5 workers. In one nest the worker bees constructed brood, and in the other food (sugar and pollen) was provided. Before exposure, the worker bees were allowed a training to forage for untreated food; afterwards this was replaced by treated food. Using this setup we investigated the effects of sublethal concentrations of the neonicotinoid insecticide imidacloprid, known to negatively affect the foraging behavior of bees. For comparison within the family of neonicotinoid insecticides, we also tested different concentrations of two other neonicotinoids: thiamethoxam and thiacloprid, in the laboratory with the new bioassay. Finally to evaluate the new bioassay, we also tested sublethal concentrations of imidacloprid in the greenhouse with use of queenright colonies of B. terrestris, and here worker bees needed to forage/fly for food that was placed at a distance of 3 m from their hives. In general, the experiments showed that concentrations that may be considered safe for bumblebees can have a negative influence on their foraging behavior. Therefore it is recommended that behavior tests should be included in risk assessment tests for highly toxic pesticides because impairment of the foraging behavior can result in a decreased pollination, lower reproduction and finally in colony mortality due to a lack of food.


Assuntos
Anabasina/toxicidade , Comportamento Apetitivo/efeitos dos fármacos , Abelhas/efeitos dos fármacos , Inseticidas/toxicidade , Polinização/efeitos dos fármacos , Análise de Variância , Animais , Bioensaio/métodos , Imidazóis/toxicidade , Neonicotinoides , Nitrocompostos/toxicidade , Oxazinas/toxicidade , Piridinas/toxicidade , Medição de Risco , Tiametoxam , Tiazinas/toxicidade , Tiazóis/toxicidade , Testes de Toxicidade Crônica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA