Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 121(4): 953-964, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633739

RESUMO

Diving narcosis results from the complex interaction of gases, activities, and environmental conditions. We hypothesized that these interactions could be separated into their component parts. Where previous studies have tested single cognitive tasks sequentially, we varied inspired partial pressures of CO2, N2, and O2 in immersed, exercising subjects while assessing multitasking performance with the Multi-Attribute Task Battery II (MATB-II) flight simulator. Cognitive performance was tested under 20 conditions of gas partial pressure and exercise in 42 male subjects meeting U.S. Navy age and fitness profiles. Inspired nitrogen (N2) and oxygen (O2) partial pressures were 0, 4.5, and 5.6 ATA and 0.21, 1.0, and 1.22 ATA, respectively, at rest and during 100-W immersed exercise with and without 0.075-ATA CO2 Linear regression modeled the association of gas partial pressure with task performance while controlling for exercise, hypercapnic ventilatory response, dive training, video game frequency, and age. Subjects served as their own controls. Impairment of memory, attention, and planning, but not motor tasks, was associated with N2 partial pressures >4.5 ATA. Sea level O2 at 0.925 ATA partially rescued motor and memory reaction time impaired by 0.075-ATA CO2; however, at hyperbaric pressures an unexpectedly strong interaction between CO2, N2, and exercise caused incapacitating narcosis with amnesia, which was augmented by O2 Perception of narcosis was not correlated with actual scores. The relative contributions of factors associated with diving narcosis will be useful to predict the effects of gas mixtures and exercise conditions on the cognitive performance of divers. The O2 effects are consistent with O2 narcosis or enhanced O2 toxicity.


Assuntos
Dióxido de Carbono/sangue , Mergulho/efeitos adversos , Oxigenoterapia Hiperbárica/efeitos adversos , Narcose por Gás Inerte/fisiopatologia , Óxido Nítrico/sangue , Oxigênio/metabolismo , Desempenho Psicomotor , Adulto , Pressão Atmosférica , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Humanos , Narcose por Gás Inerte/etiologia , Masculino , Pessoa de Meia-Idade , Movimento , Adulto Jovem
2.
J Appl Physiol (1985) ; 58(3): 978-88, 1985 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2984168

RESUMO

To investigate the effects of both exercise and acute exposure to high altitude on ventilation-perfusion (VA/Q) relationships in the lungs, nine young men were studied at rest and at up to three different levels of exercise on a bicycle ergometer. Altitude was simulated in a hypobaric chamber with measurements made at sea level (mean barometric pressure = 755 Torr) and at simulated altitudes of 5,000 (632 Torr), 10,000 (523 Torr), and 15,000 ft (429 Torr). VA/Q distributions were estimated using the multiple inert gas elimination technique. Dispersion of the distributions of blood flow and ventilation were evaluated by both loge standard deviations (derived from the VA/Q 50-compartment lung model) and three new indices of dispersion that are derived directly from inert gas data. Both methods indicated a broadening of the distributions of blood flow and ventilation with increasing exercise at sea level, but the trend was of borderline statistical significance. There was no change in the resting distributions with altitude. However, with exercise at high altitude (10,000 and 15,000 ft) there was a significant increase in dispersion of blood flow (P less than 0.05) which implies an increase in intraregional inhomogeneity that more than counteracts the more uniform topographical distribution that occurs. Since breathing 100% O2 at 15,000 ft abolished the increased dispersion, the greater VA/Q mismatching seen during exercise at altitude may be related to pulmonary hypertension.


Assuntos
Altitude , Esforço Físico , Relação Ventilação-Perfusão , Aclimatação , Adulto , Câmaras de Exposição Atmosférica , Teste de Esforço , Frequência Cardíaca , Humanos , Masculino , Gases Nobres , Oxigênio/fisiologia , Circulação Pulmonar , Troca Gasosa Pulmonar , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA