Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 761: 144094, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33360652

RESUMO

Life cycle assessment (LCA) has been widely applied in many different sectors, but the marine products and seafood segment have received relatively little attention in the past. In recent decades, global fish production experienced sustained growth and peaked at about 179 million tonnes in 2018. Consequently, increased interest in the environmental implications of fishery products along the supply chain, namely from capture to end of life, was recently experienced by society, industry and policy-makers. This timely review aims to describe the current framework of LCA and its application to the seafood sector that mainly focused on fish extraction and processing, but it also encompassed the remaining stages. An excess of 60 studies conducted over the last decade, along with some additional publications, were comprehensively reviewed; these focused on the main LCA methodological choices, including but not limited to, functional unit, system boundaries allocation methods and environmental indicators. The review identifies key recommendations on the progression of LCA for this increasingly important sustaining seafood sector. Specifically, these recommendations include (i) the need for specific indicators for fish-related activities, (ii) the target species and their geographical origin, (iii) knowledge and technology transfer and, (iv) the application and implementation of key recommendations from LCA research that will improve the accuracy of LCA models in this sector. Furthermore, the review comprises a section addressing previous and current challenges of the seafood sector. Wastewater treatment, ghost fishing or climate change, are also the objects of discussion together with advocating support for the water-energy-food nexus as a valuable tool to minimize environmental negativities and to frame successful synergies.


Assuntos
Mudança Climática , Alimentos Marinhos , Animais , Estágios do Ciclo de Vida
2.
Epidemiol Infect ; 147: e170, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-31063099

RESUMO

Dengue is a widespread vector-borne disease believed to affect between 100 and 390 million people every year. The interaction between vector, host and pathogen is influenced by various climatic factors and the relationship between dengue and climatic conditions has been poorly explored in India. This study explores the relationship between El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and dengue cases in India. Additionally, distributed lag non-linear model was used to assess the delayed effects of climatic factors on dengue cases. The weekly dengue cases reported by the Integrated Disease Surveillance Program (IDSP) over India during the period 2010-2017 were analysed. The study shows that dengue cases usually follow a seasonal pattern, with most cases reported in August and September. Both temperature and rainfall were positively associated with the number of dengue cases. The precipitation shows the higher transmission risk of dengue was observed between 8 and 15 weeks of lag. The highest relative risk (RR) of dengue was observed at 60 mm rainfall with a 12-week lag period when compared with 40 and 80 mm rainfall. The RR of dengue tends to increase with increasing mean temperature above 24 °C. The largest transmission risk of dengue was observed at 30 °C with a 0-3 weeks of lag. Similarly, the transmission risk increases more than twofold when the minimum temperature reaches 26 °C with a 2-week lag period. The dengue cases and El Niño were positively correlated with a 3-6 months lag period. The significant correlation observed between the IOD and dengue cases was shown for a 0-2 months lag period.


Assuntos
Clima , Dengue/epidemiologia , Transmissão de Doença Infecciosa , Conceitos Meteorológicos , Efeitos Psicossociais da Doença , Humanos , Índia/epidemiologia , Oceano Índico , Oceano Pacífico , Estações do Ano , Temperatura , Fatores de Tempo
3.
Sci Rep ; 8(1): 6773, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29691428

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

4.
Emerg Microbes Infect ; 6(8): e70, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28790459

RESUMO

For the past ten years, the number of dengue cases has gradually increased in India. Dengue is driven by complex interactions among host, vector and virus that are influenced by climatic factors. In the present study, we focused on the extrinsic incubation period (EIP) and its variability in different climatic zones of India. The EIP was calculated by using daily and monthly mean temperatures for the states of Punjab, Haryana, Gujarat, Rajasthan and Kerala. Among the studied states, a faster/low EIP in Kerala (8-15 days at 30.8 and 23.4 °C) and a generally slower/high EIP in Punjab (5.6-96.5 days at 35 and 0 °C) were simulated with daily temperatures. EIPs were calculated for different seasons, and Kerala showed the lowest EIP during the monsoon period. In addition, a significant association between dengue cases and precipitation was also observed. The results suggest that temperature is important in virus development in different climatic regions and may be useful in understanding spatio-temporal variations in dengue risk. Climate-based disease forecasting models in India should be refined and tailored for different climatic zones, instead of use of a standard model.


Assuntos
Clima , Vírus da Dengue/fisiologia , Dengue/epidemiologia , Aedes/virologia , Animais , Mudança Climática , Dengue/economia , Dengue/transmissão , Dengue/virologia , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/isolamento & purificação , Humanos , Índia/epidemiologia , Insetos Vetores/virologia , Chuva , Estações do Ano , Temperatura
5.
Sci Rep ; 7(1): 7134, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28769039

RESUMO

Climate change is expected to threaten human health and well-being via its effects on climate-sensitive infectious diseases, potentially changing their spatial distributions, affecting annual/seasonal cycles, or altering disease incidence and severity. Climate sensitivity of pathogens is a key indicator that diseases might respond to climate change, but the proportion of pathogens that is climate-sensitive, and their characteristics, are not known. The climate sensitivity of European human and domestic animal infectious pathogens, and the characteristics associated with sensitivity, were assessed systematically in terms of selection of pathogens and choice of literature reviewed. Sixty-three percent (N = 157) of pathogens were climate sensitive; 82% to primary drivers such as rainfall and temperature. Protozoa and helminths, vector-borne, foodborne, soilborne and waterborne transmission routes were associated with larger numbers of climate drivers. Zoonotic pathogens were more climate sensitive than human- or animal-only pathogens. Thirty-seven percent of disability-adjusted-life-years arise from human infectious diseases that are sensitive to primary climate drivers. These results help prioritize surveillance for pathogens that may respond to climate change. Although this study identifies a high degree of climate sensitivity among important pathogens, their response to climate change will be dependent on the nature of their association with climate drivers and impacts of other drivers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA