Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Aquat Toxicol ; 213: 105225, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31220755

RESUMO

Phenylurea herbicides are often present in the aquatic ecosystems and may be accumulated by the non-targeted organisms and impose a negative effect on the organism and the community. This study aims to investigate and compare the effects of two different isoproturon (IPU) pulse exposure scenarios on the non-targeted aquatic plant Lemna minor with effects observed in the standard test with continuous exposure. The obtained results showed that continuous IPU treatment causes significant reduction of photosynthetic pigment concentration and proteins as well as inhibition of L. minor growth. The activities of CAT, G-POX, and APX were significantly induced to diminish the accumulation of ROS under IPU treatment, but the induction of antioxidant enzymes was not sufficient to protect the plants from herbicide-induced oxidative stress. The growth of L. minor under pulse exposure to IPU recovers fast, but pulse treatment results in significant physiological changes in treated plants. The accumulation of H2O2 and lipid peroxidation products, alongside the reduced concentration of proteins and photosynthetic pigments in pulse treatment after a recovery period, indicates that IPU causes prolonged oxidative stress in L. minor plants. The recovery potential of L. minor plants after treatment with herbicides may have an important role in maintaining the population of essential primary producers in aquatic ecosystems, but IPU-induced physiological changes could potentially have a significant role in modulating the response of the plants to the next exposure event.


Assuntos
Araceae/crescimento & desenvolvimento , Araceae/fisiologia , Compostos de Fenilureia/toxicidade , Testes de Toxicidade , Antioxidantes/metabolismo , Araceae/efeitos dos fármacos , Carotenoides/metabolismo , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese , Proteínas de Plantas/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Tempo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA