RESUMO
BACKGROUND: Integration of a sensitive point-of-care (POC) HIV viral load (VL) test into screening algorithms may help detect acute HIV infection earlier, identify people with HIV (PWH) who are not virally suppressed, and facilitate earlier referral to antiretroviral therapy (ART), or evaluation for pre-exposure prophylaxis (PrEP). This report describes a randomized clinical trial sponsored by the Centers for Disease Control and Prevention (CDC): "Ending the HIV Epidemic Through Point-of-Care Technologies" (EHPOC). The study's primary aim is to evaluate the use of a POC HIV VL test as part of a testing approach and assess the impact on time to linkage to ART or PrEP. The study will recruit people in Baltimore, Maryland, including patients attending a hospital emergency department, patients attending an infectious disease clinic, and people recruited via community outreach. The secondary aim is to evaluate the performance characteristics of two rapid HIV antibody tests approved by the United States Food and Drug Administration (FDA). METHODS: The study will recruit people 18 years or older who have risk factors for HIV acquisition and are not on PrEP, or PWH who are not taking ART. Participants will be randomly assigned to either the control arm or the intervention arm. Participants randomized to the control arm will only receive the standard-of-care (SOC) HIV screening tests. Intervention arm participants will receive a POC HIV VL test in addition to the SOC HIV diagnostic screening tests. Follow up will consist of an interim phone survey conducted at week-4 and an in-person week-12 visit. Demographic and behavioral information, and oral fluid and blood specimens will be collected at enrollment and at week-12. Survey data will be captured in a Research Electronic Data Capture (REDCap) database. Participants in both arms will be referred for either ART or PrEP based on their HIV test results. DISCUSSION: The EHPOC trial will explore a novel HIV diagnostic technology that can be performed at the POC and provide viral assessment. The study may help inform HIV testing algorithms and contribute to the evidence to support same day ART and PrEP recommendations. TRIAL REGISTRATION: NIH ClinicalTrials.gov NCT04793750. Date: 11 March 2021.
Assuntos
Infecções por HIV , Sistemas Automatizados de Assistência Junto ao Leito , Estados Unidos , Humanos , Baltimore , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Carga Viral , Teste de HIVRESUMO
BACKGROUND: Serial screening is critical for restricting spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by facilitating timely identification of infected individuals to interrupt transmission. Variation in sensitivity of different diagnostic tests at different stages of infection has not been well documented. METHODS: In a longitudinal study of 43 adults newly infected with SARS-CoV-2, all provided daily saliva and nasal swabs for quantitative reverse transcription polymerase chain reaction (RT-qPCR), Quidel SARS Sofia antigen fluorescent immunoassay (FIA), and live virus culture. RESULTS: Both RT-qPCR and Quidel SARS Sofia antigen FIA peaked in sensitivity during the period in which live virus was detected in nasal swabs, but sensitivity of RT-qPCR tests rose more rapidly prior to this period. We also found that serial testing multiple times per week increases the sensitivity of antigen tests. CONCLUSIONS: RT-qPCR tests are more effective than antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (given timely results reporting). All tests showed >98% sensitivity for identifying infected individuals if used at least every 3 days. Daily screening using antigen tests can achieve approximately 90% sensitivity for identifying infected individuals while they are viral culture positive.
Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , Testes Diagnósticos de Rotina , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , Animais , Antígenos Virais/análise , Chlorocebus aethiops , Feminino , Humanos , Estudos Longitudinais , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Saliva , Sensibilidade e Especificidade , Células Vero , Adulto JovemRESUMO
WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?: Diagnostic tests and sample types for SARS-CoV-2 vary in sensitivity across the infection period. WHAT IS ADDED BY THIS REPORT?: We show that both RTqPCR (from nasal swab and saliva) and the Quidel SARS Sofia FIA rapid antigen tests peak in sensitivity during the period in which live virus can be detected in nasal swabs, but that the sensitivity of RTqPCR tests rises more rapidly in the pre-infectious period. We also use empirical data to estimate the sensitivities of RTqPCR and antigen tests as a function of testing frequency. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: RTqPCR tests will be more effective than rapid antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (provided results reporting is timely). All modalities, including rapid antigen tests, showed >94% sensitivity to detect infection if used at least twice per week. Regular surveillance/screening using rapid antigen tests 2-3 times per week can be an effective strategy to achieve high sensitivity (>95%) for identifying infected individuals.
RESUMO
The COVID-19 pandemic has caused significant morbidity and mortality. There is an urgent need for serological tests to detect antibodies against SARS-CoV-2, which could be used to assess past infection, evaluate responses to vaccines in development, and determine individuals who may be protected from future infection. Current serological tests developed for SARS-CoV-2 rely on traditional technologies such as enzyme-linked immunosorbent assays (ELISA) and lateral flow assays, which have not scaled to meet the demand of hundreds of millions of antibody tests so far. Herein, we present an alternative method of antibody testing that depends on one protein reagent being added to patient serum/plasma or whole blood with direct, visual readout. Two novel fusion proteins, RBD-2E8 and B6-CH1-RBD, were designed to bind red blood cells (RBCs) via a single-chain variable fragment (scFv), thereby displaying the receptor-binding domain (RBD) of SARS-CoV-2 spike protein on the surface of RBCs. Mixing mammalian-derived RBD-2E8 and B6-CH1-RBD with convalescent COVID-19 patient serum and RBCs led to visible hemagglutination, indicating the presence of antibodies against SARS-CoV-2 RBD. B6-CH1-RBD made in bacteria was not as effective in inducing agglutination, indicating better recognition of RBD epitopes from mammalian cells. Given that our hemagglutination test uses methods routinely used in hospital clinical labs across the world for blood typing, we anticipate the test can be rapidly deployed at minimal cost. We anticipate our hemagglutination assay may find extensive use in low-resource settings for detecting SARS-CoV-2 antibodies.