Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Carbohydr Res ; 527: 108806, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37058948

RESUMO

Pectobacterium brasiliense is a widespread plant pathogenic bacterium classified to the Pectobacteriaceae family, which causes significant economic losses because of the developed soft rot and blackleg symptoms on potatoes and a wide spectrum of crops, vegetables, and ornamentals. One of the key virulence factors is a lipopolysaccharide due to its involvement in efficient colonisation of plant tissues and overcoming the host defence mechanisms. Thus, we structurally characterised the O-polysaccharide from the LPS of P. brasiliense strain IFB5527 (HAFL05) using chemical methods followed by GLC and GLC-MS as well as 1D and 2D NMR spectroscopy. The analyses revealed that the polysaccharide repeating unit consists of Fuc, Glc, GlcN and an unusual N-formylated 6-deoxy amino sugar, Qui3NFo, and has the structure shown below.


Assuntos
Lipopolissacarídeos , Pectobacterium , Pectobacterium/química , Polissacarídeos/química
2.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502164

RESUMO

Plant pathogenic bacteria cause significant economic losses in the global food production sector. To secure an adequate amount of high-quality nutrition for the growing human population, novel approaches need to be undertaken to combat plant disease-causing agents. As the currently available methods to eliminate bacterial phytopathogens are scarce, we evaluated the effectiveness and mechanism of action of a non-thermal atmospheric pressure plasma (NTAPP). It was ignited from a dielectric barrier discharge (DBD) operation in a plasma pencil, and applied for the first time for eradication of Dickeya and Pectobacterium spp., inoculated either on glass spheres or mung bean seeds. Furthermore, the impact of the DBD exposure on mung bean seeds germination and seedlings growth was estimated. The observed bacterial inactivation rates exceeded 3.07 logs. The two-minute DBD exposure stimulated by 3-4% the germination rate of mung bean seeds and by 13.4% subsequent early growth of the seedlings. On the contrary, a detrimental action of the four-minute DBD subjection on seed germination and early growth of the sprouts was noted shortly after the treatment. However, this effect was no longer observed or reduced to 9.7% after the 96 h incubation period. Due to the application of optical emission spectrometry (OES), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM), we found that the generated reactive oxygen and nitrogen species (RONS), i.e., N2, N2+, NO, OH, NH, and O, probably led to the denaturation and aggregation of DNA, proteins, and ribosomes. Furthermore, the cellular membrane disrupted, leading to an outflow of the cytoplasm from the DBD-exposed cells. This study suggests the potential applicability of NTAPPs as eco-friendly and innovative plant protection methods.


Assuntos
Doenças das Plantas/prevenção & controle , Gases em Plasma/farmacologia , Sementes/efeitos dos fármacos , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/ultraestrutura , Germinação/efeitos dos fármacos , Humanos , Doenças das Plantas/microbiologia , Gases em Plasma/administração & dosagem , Plântula/efeitos dos fármacos , Sementes/microbiologia , Vigna/efeitos dos fármacos , Vigna/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA