Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Med Phys ; 50(8): e946-e960, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37427750

RESUMO

The introduction of model-based dose calculation algorithms (MBDCAs) in brachytherapy provides an opportunity for a more accurate dose calculation and opens the possibility for novel, innovative treatment modalities. The joint AAPM, ESTRO, and ABG Task Group 186 (TG-186) report provided guidance to early adopters. However, the commissioning aspect of these algorithms was described only in general terms with no quantitative goals. This report, from the Working Group on Model-Based Dose Calculation Algorithms in Brachytherapy, introduced a field-tested approach to MBDCA commissioning. It is based on a set of well-characterized test cases for which reference Monte Carlo (MC) and vendor-specific MBDCA dose distributions are available in a Digital Imaging and Communications in Medicine-Radiotherapy (DICOM-RT) format to the clinical users. The key elements of the TG-186 commissioning workflow are now described in detail, and quantitative goals are provided. This approach leverages the well-known Brachytherapy Source Registry jointly managed by the AAPM and the Imaging and Radiation Oncology Core (IROC) Houston Quality Assurance Center (with associated links at ESTRO) to provide open access to test cases as well as step-by-step user guides. While the current report is limited to the two most widely commercially available MBDCAs and only for 192 Ir-based afterloading brachytherapy at this time, this report establishes a general framework that can easily be extended to other brachytherapy MBDCAs and brachytherapy sources. The AAPM, ESTRO, ABG, and ABS recommend that clinical medical physicists implement the workflow presented in this report to validate both the basic and the advanced dose calculation features of their commercial MBDCAs. Recommendations are also given to vendors to integrate advanced analysis tools into their brachytherapy treatment planning system to facilitate extensive dose comparisons. The use of the test cases for research and educational purposes is further encouraged.


Assuntos
Braquiterapia , Braquiterapia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Relatório de Pesquisa , Método de Monte Carlo , Radiometria
2.
Med Phys ; 50(7): 4675-4687, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37194638

RESUMO

PURPOSE: To provide the first clinical test case for commissioning of 192 Ir brachytherapy model-based dose calculation algorithms (MBDCAs) according to the AAPM TG-186 report workflow. ACQUISITION AND VALIDATION METHODS: A computational patient phantom model was generated from a clinical multi-catheter 192 Ir HDR breast brachytherapy case. Regions of interest (ROIs) were contoured and digitized on the patient CT images and the model was written to a series of DICOM CT images using MATLAB. The model was imported into two commercial treatment planning systems (TPSs) currently incorporating an MBDCA. Identical treatment plans were prepared using a generic 192 Ir HDR source and the TG-43-based algorithm of each TPS. This was followed by dose to medium in medium calculations using the MBDCA option of each TPS. Monte Carlo (MC) simulation was performed in the model using three different codes and information parsed from the treatment plan exported in DICOM radiation therapy (RT) format. Results were found to agree within statistical uncertainty and the dataset with the lowest uncertainty was assigned as the reference MC dose distribution. DATA FORMAT AND USAGE NOTES: The dataset is available online at http://irochouston.mdanderson.org/rpc/BrachySeeds/BrachySeeds/index.html,https://doi.org/10.52519/00005. Files include the treatment plan for each TPS in DICOM RT format, reference MC dose data in RT Dose format, as well as a guide for database users and all files necessary to repeat the MC simulations. POTENTIAL APPLICATIONS: The dataset facilitates the commissioning of brachytherapy MBDCAs using TPS embedded tools and establishes a methodology for the development of future clinical test cases. It is also useful to non-MBDCA adopters for intercomparing MBDCAs and exploring their benefits and limitations, as well as to brachytherapy researchers in need of a dosimetric and/or a DICOM RT information parsing benchmark. Limitations include specificity in terms of radionuclide, source model, clinical scenario, and MBDCA version used for its preparation.


Assuntos
Braquiterapia , Humanos , Dosagem Radioterapêutica , Braquiterapia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria , Mama/diagnóstico por imagem , Método de Monte Carlo
3.
Med Phys ; 44(11): 5961-5976, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28722180

RESUMO

PURPOSE: A joint working group was created by the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) with the charge, among others, to develop a set of well-defined test case plans and perform calculations and comparisons with model-based dose calculation algorithms (MBDCAs). Its main goal is to facilitate a smooth transition from the AAPM Task Group No. 43 (TG-43) dose calculation formalism, widely being used in clinical practice for brachytherapy, to the one proposed by Task Group No. 186 (TG-186) for MBDCAs. To do so, in this work a hypothetical, generic high-dose rate (HDR) 192 Ir shielded applicator has been designed and benchmarked. METHODS: A generic HDR 192 Ir shielded applicator was designed based on three commercially available gynecological applicators as well as a virtual cubic water phantom that can be imported into any DICOM-RT compatible treatment planning system (TPS). The absorbed dose distribution around the applicator with the TG-186 192 Ir source located at one dwell position at its center was computed using two commercial TPSs incorporating MBDCAs (Oncentra® Brachy with Advanced Collapsed-cone Engine, ACE™, and BrachyVision ACUROS™) and state-of-the-art Monte Carlo (MC) codes, including ALGEBRA, BrachyDose, egs_brachy, Geant4, MCNP6, and Penelope2008. TPS-based volumetric dose distributions for the previously reported "source centered in water" and "source displaced" test cases, and the new "source centered in applicator" test case, were analyzed here using the MCNP6 dose distribution as a reference. Volumetric dose comparisons of TPS results against results for the other MC codes were also performed. Distributions of local and global dose difference ratios are reported. RESULTS: The local dose differences among MC codes are comparable to the statistical uncertainties of the reference datasets for the "source centered in water" and "source displaced" test cases and for the clinically relevant part of the unshielded volume in the "source centered in applicator" case. Larger local differences appear in the shielded volume or at large distances. Considering clinically relevant regions, global dose differences are smaller than the local ones. The most disadvantageous case for the MBDCAs is the one including the shielded applicator. In this case, ACUROS agrees with MC within [-4.2%, +4.2%] for the majority of voxels (95%) while presenting dose differences within [-0.12%, +0.12%] of the dose at a clinically relevant reference point. For ACE, 95% of the total volume presents differences with respect to MC in the range [-1.7%, +0.4%] of the dose at the reference point. CONCLUSIONS: The combination of the generic source and generic shielded applicator, together with the previously developed test cases and reference datasets (available in the Brachytherapy Source Registry), lay a solid foundation in supporting uniform commissioning procedures and direct comparisons among treatment planning systems for HDR 192 Ir brachytherapy.


Assuntos
Algoritmos , Braquiterapia/métodos , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Doses de Radiação , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Int J Radiat Oncol Biol Phys ; 96(4): 888-896, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27623307

RESUMO

PURPOSE: To quantify differences that exist between dosimetry models used for 90Y selective internal radiation therapy (SIRT). METHODS AND MATERIALS: Retrospectively, 37 tumors were delineated on 19 post-therapy quantitative 90Y single photon emission computed tomography/computed tomography scans. Using matched volumes of interest (VOIs), absorbed doses were reported using 3 dosimetry models: glass microsphere package insert standard model (SM), partition model (PM), and Monte Carlo (MC). Univariate linear regressions were performed to predict mean MC from SM and PM. Analysis was performed for 2 subsets: cases with a single tumor delineated (best case for PM), and cases with multiple tumors delineated (typical clinical scenario). Variability in PM from the ad hoc placement of a single spherical VOI to estimate the entire normal liver activity concentration for tumor (T) to nontumoral liver (NL) ratios (TNR) was investigated. We interpreted the slope of the resulting regression as bias and the 95% prediction interval (95%PI) as uncertainty. MCNLsingle represents MC absorbed doses to the NL for the single tumor patient subset; other combinations of calculations follow a similar naming convention. RESULTS: SM was unable to predict MCTsingle or MCTmultiple (p>.12, 95%PI >±177 Gy). However, SMsingle was able to predict (p<.012) MCNLsingle, albeit with large uncertainties; SMsingle and SMmultiple yielded biases of 0.62 and 0.71, and 95%PI of ±40 and ± 32 Gy, respectively. PMTsingle and PMTmultiple predicted (p<2E-6) MCTsingle and MCTmultiple with biases of 0.52 and 0.54, and 95%PI of ±38 and ± 111 Gy, respectively. The TNR variability in PMTsingle increased the 95%PI for predicting MCTsingle (bias = 0.46 and 95%PI = ±103 Gy). The TNR variability in PMTmultiple modified the bias when predicting MCTmultiple (bias = 0.32 and 95%PI = ±110 Gy). CONCLUSIONS: The SM is unable to predict mean MC tumor absorbed dose. The PM is statistically correlated with mean MC, but the resulting uncertainties in predicted MC are large. Large differences observed between dosimetry models for 90Y SIRT warrant caution when interpreting published SIRT absorbed doses. To reduce uncertainty, we suggest the entire NL VOI be used for TNR estimates when using PM.


Assuntos
Neoplasias Hepáticas/radioterapia , Fígado/efeitos da radiação , Microesferas , Neoplasias Primárias Múltiplas/radioterapia , Dosagem Radioterapêutica , Radioisótopos de Ítrio/uso terapêutico , Vidro , Humanos , Modelos Lineares , Fígado/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Modelos Estatísticos , Método de Monte Carlo , Neoplasias Primárias Múltiplas/diagnóstico por imagem , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Agregado de Albumina Marcado com Tecnécio Tc 99m , Tomografia Computadorizada de Emissão de Fóton Único , Incerteza
5.
Phys Med Biol ; 61(12): 4564-82, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27224727

RESUMO

To evaluate the 3D Grid-based Boltzmann Solver (GBBS) code ATTILA (®) for coupled electron and photon transport in the nuclear medicine energy regime for electron (beta, Auger and internal conversion electrons) and photon (gamma, x-ray) sources. Codes rewritten based on ATTILA are used clinically for both high-energy photon teletherapy and (192)Ir sealed source brachytherapy; little information exists for using the GBBS to calculate voxel-level absorbed doses in nuclear medicine. We compared DOSXYZnrc Monte Carlo (MC) with published voxel-S-values to establish MC as truth. GBBS was investigated for mono-energetic 1.0, 0.1, and 0.01 MeV electron and photon sources as well as (131)I and (90)Y radionuclides. We investigated convergence of GBBS by analyzing different meshes ([Formula: see text]), energy group structures ([Formula: see text]) for each radionuclide component, angular quadrature orders ([Formula: see text], and scattering order expansions ([Formula: see text]-[Formula: see text]); higher indices imply finer discretization. We compared GBBS to MC in (1) voxel-S-value geometry for soft tissue, lung, and bone, and (2) a source at the interface between combinations of lung, soft tissue, and bone. Excluding Auger and conversion electrons, MC agreed within ≈5% of published source voxel absorbed doses. For the finest discretization, most GBBS absorbed doses in the source voxel changed by less than 1% compared to the next finest discretization along each phase space variable indicating sufficient convergence. For the finest discretization, agreement with MC in the source voxel ranged from -3% to -20% with larger differences at lower energies (-3% for 1 MeV electron in lung to -20% for 0.01 MeV photon in bone); similar agreement was found for the interface geometries. Differences between GBBS and MC in the source voxel for (90)Y and (131)I were -6%. The GBBS ATTILA was benchmarked against MC in the nuclear medicine regime. GBBS can be a viable alternative to MC for voxel-level absorbed doses in nuclear medicine. However, reconciliation of the differences between GBBS and MC at lower energies requires further investigation of energy deposition cross-sections.


Assuntos
Absorção de Radiação , Braquiterapia/normas , Medicina Nuclear/normas , Doses de Radiação , Cintilografia/normas , Carga Corporal (Radioterapia) , Humanos , Método de Monte Carlo , Medicina Nuclear/métodos
6.
Med Phys ; 42(6): 3048-61, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26127057

RESUMO

PURPOSE: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) (192)Ir source and a virtual water phantom were designed, which can be imported into a TPS. METHODS: A hypothetical, generic HDR (192)Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic (192)Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra(®) Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS™ ]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201)(3) voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR (192)Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by different investigators. MC results were then compared against dose calculated using TG-43 and MBDCA methods. RESULTS: TG-43 and PSS datasets were generated for the generic source, the PSS data for use with the ace algorithm. The dose-rate constant values obtained from seven MC simulations, performed independently using different codes, were in excellent agreement, yielding an average of 1.1109 ± 0.0004 cGy/(h U) (k = 1, Type A uncertainty). MC calculated dose-rate distributions for the two plans were also found to be in excellent agreement, with differences within type A uncertainties. Differences between commercial MBDCA and MC results were test, position, and calculation parameter dependent. On average, however, these differences were within 1% for ACUROS and 2% for ace at clinically relevant distances. CONCLUSIONS: A hypothetical, generic HDR (192)Ir source was designed and implemented in two commercially available TPSs employing different MBDCAs. Reference dose distributions for this source were benchmarked and used for the evaluation of MBDCA calculations employing a virtual, cubic water phantom in the form of a CT DICOM image series. The implementation of a generic source of identical design in all TPSs using MBDCAs is an important step toward supporting univocal commissioning procedures and direct comparisons between TPSs.


Assuntos
Braquiterapia/métodos , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Água
7.
Brachytherapy ; 13(3): 304-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24139289

RESUMO

PURPOSE: The aim of this study was to analyze the dosimetric influence of conventional spacers and a cobalt chloride complex contrast (C4) agent, a novel marker for MRI that can also serve as a seed spacer, adjacent to (103)Pd, (125)I, and (131)Cs sources for permanent prostate brachytherapy. METHODS AND MATERIALS: Monte Carlo methods for radiation transport were used to estimate the dosimetric influence of brachytherapy end-weld thicknesses and spacers near the three sources. Single-source assessments and volumetric conditions simulating prior patient treatments were computed. Volume-dose distributions were imported to a treatment planning system for dose-volume histogram analyses. RESULTS: Single-source assessment revealed that brachytherapy spacers primarily attenuated the dose distribution along the source long axis. The magnitude of the attenuation at 1 cm on the long axis ranged from -10% to -5% for conventional spacers and approximately -2% for C4 spacers, with the largest attenuation for (103)Pd. Spacer perturbation of dose distributions was less than manufacturing tolerances for brachytherapy sources as gleaned by an analysis of end-weld thicknesses. Volumetric Monte Carlo assessment demonstrated that TG-43 techniques overestimated calculated doses by approximately 2%. Specific dose-volume histogram metrics for prostate implants were not perturbed by inclusion of conventional or C4 spacers in clinical models. CONCLUSIONS: Dosimetric perturbations of single-seed dose distributions by brachytherapy spacers exceeded 10% along the source long axes adjacent to the spacers. However, no dosimetric impact on volumetric parameters was noted for brachytherapy spacers adjacent to (103)Pd, (125)I, or (131)Cs sources in the context of permanent prostate brachytherapy implants.


Assuntos
Braquiterapia/métodos , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Humanos , Masculino , Modelos Teóricos , Método de Monte Carlo , Radiometria/métodos
8.
Med Phys ; 39(10): 6161-84, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23039655

RESUMO

Dosimetry of eye plaques for ocular tumors presents unique challenges in brachytherapy. The challenges in accurate dosimetry are in part related to the steep dose gradient in the tumor and critical structures that are within millimeters of radioactive sources. In most clinical applications, calculations of dose distributions around eye plaques assume a homogenous water medium and full scatter conditions. Recent Monte Carlo (MC)-based eye-plaque dosimetry simulations have demonstrated that the perturbation effects of heterogeneous materials in eye plaques, including the gold-alloy backing and Silastic insert, can be calculated with reasonable accuracy. Even additional levels of complexity introduced through the use of gold foil "seed-guides" and custom-designed plaques can be calculated accurately using modern MC techniques. Simulations accounting for the aforementioned complexities indicate dose discrepancies exceeding a factor of ten to selected critical structures compared to conventional dose calculations. Task Group 129 was formed to review the literature; re-examine the current dosimetry calculation formalism; and make recommendations for eye-plaque dosimetry, including evaluation of brachytherapy source dosimetry parameters and heterogeneity correction factors. A literature review identified modern assessments of dose calculations for Collaborative Ocular Melanoma Study (COMS) design plaques, including MC analyses and an intercomparison of treatment planning systems (TPS) detailing differences between homogeneous and heterogeneous plaque calculations using the American Association of Physicists in Medicine (AAPM) TG-43U1 brachytherapy dosimetry formalism and MC techniques. This review identified that a commonly used prescription dose of 85 Gy at 5 mm depth in homogeneous medium delivers about 75 Gy and 69 Gy at the same 5 mm depth for specific (125)I and (103)Pd sources, respectively, when accounting for COMS plaque heterogeneities. Thus, the adoption of heterogeneous dose calculation methods in clinical practice would result in dose differences >10% and warrant a careful evaluation of the corresponding changes in prescription doses. Doses to normal ocular structures vary with choice of radionuclide, plaque location, and prescription depth, such that further dosimetric evaluations of the adoption of MC-based dosimetry methods are needed. The AAPM and American Brachytherapy Society (ABS) recommend that clinical medical physicists should make concurrent estimates of heterogeneity-corrected delivered dose using the information in this report's tables to prepare for brachytherapy TPS that can account for material heterogeneities and for a transition to heterogeneity-corrected prescriptive goals. It is recommended that brachytherapy TPS vendors include material heterogeneity corrections in their systems and take steps to integrate planned plaque localization and image guidance. In the interim, before the availability of commercial MC-based brachytherapy TPS, it is recommended that clinical medical physicists use the line-source approximation in homogeneous water medium and the 2D AAPM TG-43U1 dosimetry formalism and brachytherapy source dosimetry parameter datasets for treatment planning calculations. Furthermore, this report includes quality management program recommendations for eye-plaque brachytherapy.


Assuntos
Comportamento Cooperativo , Neoplasias Oculares/radioterapia , Olho/efeitos da radiação , Melanoma/radioterapia , Paládio/uso terapêutico , Relatório de Pesquisa , Sociedades Médicas , Braquiterapia , Olho/patologia , Neoplasias Oculares/patologia , Neoplasias Oculares/cirurgia , Humanos , Radioisótopos do Iodo/uso terapêutico , Melanoma/patologia , Melanoma/cirurgia , Método de Monte Carlo , Período Pós-Operatório , Período Pré-Operatório , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem
9.
Med Phys ; 39(10): 6208-36, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23039658

RESUMO

The charge of Task Group 186 (TG-186) is to provide guidance for early adopters of model-based dose calculation algorithms (MBDCAs) for brachytherapy (BT) dose calculations to ensure practice uniformity. Contrary to external beam radiotherapy, heterogeneity correction algorithms have only recently been made available to the BT community. Yet, BT dose calculation accuracy is highly dependent on scatter conditions and photoelectric effect cross-sections relative to water. In specific situations, differences between the current water-based BT dose calculation formalism (TG-43) and MBDCAs can lead to differences in calculated doses exceeding a factor of 10. MBDCAs raise three major issues that are not addressed by current guidance documents: (1) MBDCA calculated doses are sensitive to the dose specification medium, resulting in energy-dependent differences between dose calculated to water in a homogeneous water geometry (TG-43), dose calculated to the local medium in the heterogeneous medium, and the intermediate scenario of dose calculated to a small volume of water in the heterogeneous medium. (2) MBDCA doses are sensitive to voxel-by-voxel interaction cross sections. Neither conventional single-energy CT nor ICRU∕ICRP tissue composition compilations provide useful guidance for the task of assigning interaction cross sections to each voxel. (3) Since each patient-source-applicator combination is unique, having reference data for each possible combination to benchmark MBDCAs is an impractical strategy. Hence, a new commissioning process is required. TG-186 addresses in detail the above issues through the literature review and provides explicit recommendations based on the current state of knowledge. TG-43-based dose prescription and dose calculation remain in effect, with MBDCA dose reporting performed in parallel when available. In using MBDCAs, it is recommended that the radiation transport should be performed in the heterogeneous medium and, at minimum, the dose to the local medium be reported along with the TG-43 calculated doses. Assignments of voxel-by-voxel cross sections represent a particular challenge. Electron density information is readily extracted from CT imaging, but cannot be used to distinguish between different materials having the same density. Therefore, a recommendation is made to use a number of standardized materials to maintain uniformity across institutions. Sensitivity analysis shows that this recommendation offers increased accuracy over TG-43. MBDCA commissioning will share commonalities with current TG-43-based systems, but in addition there will be algorithm-specific tasks. Two levels of commissioning are recommended: reproducing TG-43 dose parameters and testing the advanced capabilities of MBDCAs. For validation of heterogeneity and scatter conditions, MBDCAs should mimic the 3D dose distributions from reference virtual geometries. Potential changes in BT dose prescriptions and MBDCA limitations are discussed. When data required for full MBDCA implementation are insufficient, interim recommendations are made and potential areas of research are identified. Application of TG-186 guidance should retain practice uniformity in transitioning from the TG-43 to the MBDCA approach.


Assuntos
Braquiterapia/métodos , Modelos Biológicos , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Relatório de Pesquisa , Algoritmos , Artefatos , Tomografia Computadorizada de Feixe Cônico , Humanos , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Incerteza , Itérbio/uso terapêutico
10.
Brachytherapy ; 11(3): 237-44, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21816684

RESUMO

PURPOSE: The purpose of this study was to determine the dosimetric parameters of the AgX100, a new (125)I brachytherapy seed model, using Monte Carlo (MC) simulations according to the protocol specified by the updated American Association of Physicists in Medicine Task Group No. 43 Report (TG-43U1) and compare these parameters with those of the established brachytherapy (125)I seed models 6711 and I25.S06. METHODS AND MATERIALS: Independent verification of the new seed geometry was performed using high-resolution digital radiography and scanning electron microscopy. MCNPX v.2.5 MC simulations of the AgX100 seed were performed to derive its TG-43U1 parameters, the dose rate constant, the radial dose function, and the two- and one-dimensional anisotropy functions in liquid water. A dosimetric error propagation analysis was also performed to include uncertainty because of seed manufacturing tolerances and physics parameters. RESULTS: The MC-calculated dose rate constant for the AgX100 seed was 0.943cGy·h(-1)·U(-1)±2.6% (k=1) based on the air kerma strength for a simulated point detector. Tabulated results of the radial dose function for line and point source approximations and the two-dimensional anisotropy function are also reported. CONCLUSIONS: The MC-predicted dose distribution of the AgX100 seed was found to be comparable with that of the model 6711 seed but much different from the dose distribution of the model I25.S06 seeds. However, at shallow distances, there were some dosimetric differences between the AgX100 and 6711 seed, which warrant separate TG-43U1 parameters for use in clinical treatment planning systems.


Assuntos
Braquiterapia/métodos , Radioisótopos do Iodo/uso terapêutico , Método de Monte Carlo , Braquiterapia/instrumentação , Humanos , Radioisótopos do Iodo/administração & dosagem , Radioisótopos do Iodo/efeitos adversos , Microscopia Eletrônica de Varredura , Modelos Biológicos , Intensificação de Imagem Radiográfica , Radiometria
11.
Med Phys ; 38(5): 2651-64, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21776802

RESUMO

PURPOSE: The deterministic Acuros XB (AXB) algorithm was recently implemented in the Eclipse treatment planning system. The goal of this study was to compare AXB performance to Monte Carlo (MC) and two standard clinical convolution methods: the anisotropic analytical algorithm (AAA) and the collapsed-cone convolution (CCC) method. METHODS: Homogeneous water and multilayer slab virtual phantoms were used for this study. The multilayer slab phantom had three different materials, representing soft tissue, bone, and lung. Depth dose and lateral dose profiles from AXB v10 in Eclipse were compared to AAA v10 in Eclipse, CCC in Pinnacle3, and EGSnrc MC simulations for 6 and 18 MV photon beams with open fields for both phantoms. In order to further reveal the dosimetric differences between AXB and AAA or CCC, three-dimensional (3D) gamma index analyses were conducted in slab regions and subregions defined by AAPM Task Group 53. RESULTS: The AXB calculations were found to be closer to MC than both AAA and CCC for all the investigated plans, especially in bone and lung regions. The average differences of depth dose profiles between MC and AXB, AAA, or CCC was within 1.1, 4.4, and 2.2%, respectively, for all fields and energies. More specifically, those differences in bone region were up to 1.1, 6.4, and 1.6%; in lung region were up to 0.9, 11.6, and 4.5% for AXB, AAA, and CCC, respectively. AXB was also found to have better dose predictions than AAA and CCC at the tissue interfaces where backscatter occurs. 3D gamma index analyses (percent of dose voxels passing a 2%/2 mm criterion) showed that the dose differences between AAA and AXB are significant (under 60% passed) in the bone region for all field sizes of 6 MV and in the lung region for most of field sizes of both energies. The difference between AXB and CCC was generally small (over 90% passed) except in the lung region for 18 MV 10 x 10 cm2 fields (over 26% passed) and in the bone region for 5 x 5 and 10 x 10 cm2 fields (over 64% passed). With the criterion relaxed to 5%/2 mm, the pass rates were over 90% for both AAA and CCC relative to AXB for all energies and fields, with the exception of AAA 18 MV 2.5 x 2.5 cm2 field, which still did not pass. CONCLUSIONS: In heterogeneous media, AXB dose prediction ability appears to be comparable to MC and superior to current clinical convolution methods. The dose differences between AXB and AAA or CCC are mainly in the bone, lung, and interface regions. The spatial distributions of these differences depend on the field sizes and energies.


Assuntos
Modelos Biológicos , Método de Monte Carlo , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Software , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Modelos Estatísticos , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Validação de Programas de Computador
12.
Med Phys ; 38(1): 306-16, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21361199

RESUMO

PURPOSE: To investigate dosimetric differences among several clinical treatment planning systems (TPS) and Monte Carlo (MC) codes for brachytherapy of intraocular tumors using 125I or 103Pd plaques, and to evaluate the impact on the prescription dose of the adoption of MC codes and certain versions of a TPS (Plaque Simulator with optional modules). METHODS: Three clinical brachytherapy TPS capable of intraocular brachytherapy treatment planning and two MC codes were compared. The TPS investigated were Pinnacle v8.0dp1, BrachyVision v8.1, and Plaque Simulator v5.3.9, all of which use the AAPM TG-43 formalism in water. The Plaque Simulator software can also handle some correction factors from MC simulations. The MC codes used are MCNP5 v1.40 and BrachyDose/EGSnrc. Using these TPS and MC codes, three types of calculations were performed: homogeneous medium with point sources (for the TPS only, using the 1D TG-43 dose calculation formalism); homogeneous medium with line sources (TPS with 2D TG-43 dose calculation formalism and MC codes); and plaque heterogeneity-corrected line sources (Plaque Simulator with modified 2D TG-43 dose calculation formalism and MC codes). Comparisons were made of doses calculated at points-of-interest on the plaque central-axis and at off-axis points of clinical interest within a standardized model of the right eye. RESULTS: For the homogeneous water medium case, agreement was within approximately 2% for the point- and line-source models when comparing between TPS and between TPS and MC codes, respectively. For the heterogeneous medium case, dose differences (as calculated using the MC codes and Plaque Simulator) differ by up to 37% on the central-axis in comparison to the homogeneous water calculations. A prescription dose of 85 Gy at 5 mm depth based on calculations in a homogeneous medium delivers 76 Gy and 67 Gy for specific 125I and 103Pd sources, respectively, when accounting for COMS-plaque heterogeneities. For off-axis points-of-interest, dose differences approached factors of 7 and 12 at some positions for 125I and 103Pd, respectively. There was good agreement (approximately 3%) among MC codes and Plaque Simulator results when appropriate parameters calculated using MC codes were input into Plaque Simulator. Plaque Simulator and MC users are perhaps at risk of overdosing patients up to 20% if heterogeneity corrections are used and the prescribed dose is not modified appropriately. CONCLUSIONS: Agreement within 2% was observed among conventional brachytherapy TPS and MC codes for intraocular brachytherapy dose calculations in a homogeneous water environment. In general, the magnitude of dose errors incurred by ignoring the effect of the plaque backing and Silastic insert (i.e., by using the TG-43 approach) increased with distance from the plaque's central-axis. Considering the presence of material heterogeneities in a typical eye plaque, the best method in this study for dose calculations is a verified MC simulation.


Assuntos
Braquiterapia/métodos , Neoplasias Oculares/radioterapia , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Radiometria
13.
J Appl Clin Med Phys ; 11(1): 3146, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20160700

RESUMO

We conducted a metrological evaluation of the dosimetric impact due to the polysulfone cap used with the Fletcher-Williamson (FW) colpostat for 192Ir high-dose rate and pulsed-dose rate intracavitary brachytherapy using Monte Carlo simulations. Polysulfone caps with diameter of 30 mm, 25 mm, 20 mm, and 16 mm (mini-ovoid) were simulated and the absorbed dose rate in the surrounding water was calculated and compared to the dose rate for a bare 192Ir source in water. The dose perturbation depended on the cap diameter, distance away from the cap surface, and angular position around the cap. The largest dose rate reductions were found to be in the direction of the tumor bed where the cap is thickest. The range of perturbation over all depths and cap diameters was +2.8% (dose enhancement) to -6.8% (dose reduction). The FW colpostat cap's material composition should be modified to reduce this dosimetric effect or brachytherapy treatment planning dose algorithms should be improved to account for this perturbation.


Assuntos
Braquiterapia/instrumentação , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Polímeros/química , Sulfonas/química , Neoplasias do Colo do Útero/radioterapia , Algoritmos , Feminino , Humanos , Mucosa/efeitos da radiação , Equipamentos de Proteção , Radiometria , Dosagem Radioterapêutica , Reto , Eficiência Biológica Relativa , Tungstênio/química , Bexiga Urinária , Vagina/efeitos da radiação
14.
Phys Med Biol ; 55(3): 581-98, 2010 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-20057008

RESUMO

A new grid-based Boltzmann equation solver, Acuros, was developed specifically for performing accurate and rapid radiotherapy dose calculations. In this study we benchmarked its performance against Monte Carlo for 6 and 18 MV photon beams in heterogeneous media. Acuros solves the coupled Boltzmann transport equations for neutral and charged particles on a locally adaptive Cartesian grid. The Acuros solver is an optimized rewrite of the general purpose Attila software, and for comparable accuracy levels, it is roughly an order of magnitude faster than Attila. Comparisons were made between Monte Carlo (EGSnrc) and Acuros for 6 and 18 MV photon beams impinging on a slab phantom comprising tissue, bone and lung materials. To provide an accurate reference solution, Monte Carlo simulations were run to a tight statistical uncertainty (sigma approximately 0.1%) and fine resolution (1-2 mm). Acuros results were output on a 2 mm cubic voxel grid encompassing the entire phantom. Comparisons were also made for a breast treatment plan on an anthropomorphic phantom. For the slab phantom in regions where the dose exceeded 10% of the maximum dose, agreement between Acuros and Monte Carlo was within 2% of the local dose or 1 mm distance to agreement. For the breast case, agreement was within 2% of local dose or 2 mm distance to agreement in 99.9% of voxels where the dose exceeded 10% of the prescription dose. Elsewhere, in low dose regions, agreement for all cases was within 1% of the maximum dose. Since all Acuros calculations required less than 5 min on a dual-core two-processor workstation, it is efficient enough for routine clinical use. Additionally, since Acuros calculation times are only weakly dependent on the number of beams, Acuros may ideally be suited to arc therapies, where current clinical algorithms may incur long calculation times.


Assuntos
Fótons/uso terapêutico , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Ar , Algoritmos , Osso e Ossos/efeitos da radiação , Neoplasias da Mama/radioterapia , Simulação por Computador , Feminino , Humanos , Pulmão/efeitos da radiação , Modelos Biológicos , Método de Monte Carlo , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/instrumentação , Software , Fatores de Tempo , Água
15.
Med Phys ; 36(9): 4147-55, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19810488

RESUMO

PURPOSE: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A3)], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. METHODS: The dosimetry of the device for a HDR 192Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR 192Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. RESULTS: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. CONCLUSIONS: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A3 may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.


Assuntos
Braquiterapia/instrumentação , Método de Monte Carlo , Tomografia Computadorizada por Raios X/métodos , Neoplasias do Colo do Útero/radioterapia , Braquiterapia/métodos , Simulação por Computador , Desenho de Equipamento , Feminino , Dosimetria Fotográfica , Humanos , Radioisótopos de Irídio , Modelos Teóricos , Imagens de Fantasmas , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador , Reto/efeitos da radiação , Rotação , Incerteza , Bexiga Urinária/efeitos da radiação
16.
J Appl Clin Med Phys ; 11(1): 3103, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20160682

RESUMO

A patient dose distribution was calculated by a 3D multi-group S N particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs-137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi-group S N particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within +/- 3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than +/- 1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs-137 CT-based patient geometry. Our data showed that a three-group cross-section set is adequate for Cs-137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations.


Assuntos
Braquiterapia , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador , Neoplasias do Colo do Útero/radioterapia , Algoritmos , Radioisótopos de Césio/uso terapêutico , Feminino , Humanos , Imageamento Tridimensional , Nanopartículas , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo , Tomografia Computadorizada por Raios X , Neoplasias do Colo do Útero/patologia
17.
Med Phys ; 36(12): 5515-24, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20095264

RESUMO

PURPOSE: Intracavitary brachytherapy (ICBT) is an integral part of the treatment regimen for cervical cancer and, generally, outcome in terms of local disease control and complications is a function of dose to the disease bed and critical structures, respectively. Therefore, it is paramount to accurately determine the dose given via ICBT to the tumor bed as well as critical structures. This is greatly facilitated through the use of advanced three-dimensional imaging modalities, such as CT and MR, to delineate critical and target structures with an ICBT applicator inserted in vivo. These methods are not possible when using a shielded applicator due to the image artifacts generated by interovoid shielding. The authors present two prototype shielded ICBT applicators that can be utilized for artifact-free CT image acquisition. They also investigate the MR amenability and dosimetry of a novel tungsten-alloy shielding material to extend the functionality of these devices. METHODS: To accomplish artifact-free CT image acquisition, a "step-and-shoot" (S&S) methodology was utilized, which exploits the prototype applicators movable interovoid shielding. Both prototypes were placed in imaging phantoms that positioned the applicators in clinically applicable orientations. CT image sets were acquired of the prototype applicators as well as a shielded Fletcher-Williamson (sFW) ovoid. Artifacts present in each CT image set were qualitatively compared for each prototype applicator following the S&S methodology and the sFW. To test the novel tungsten-alloy shielding material's MR amenability, they constructed a phantom applicator that mimics the basic components of an ICBT ovoid. This phantom applicator positions the MR-compatible shields in orientations equivalent to the sFW bladder and rectal shields. MR images were acquired within a gadopentetate dimeglumine-doped water tank using standard pulse sequences and examined for artifacts. In addition, Monte Carlo simulations were performed to match the attenuation due to the thickness of this new shield type with current, clinically utilized ovoid shields and a 192Ir HDR/PDR source. RESULTS: Artifact-free CT images could be acquired of both generation applicators in a clinically applicable geometry using the S&S method. MR images were acquired of the phantom applicator containing shields, which contained minimal, clinically relevant artifacts. The thickness required to match the dosimetry of the MR-compatible and sFW rectal shields was determined using Monte Carlo simulations. CONCLUSIONS: Utilizing a S&S imaging method in conjunction with prototype applicators that feature movable interovoid shields, they were able to acquire artifact-free CT image sets in a clinically applicable geometry. MR images were acquired of a phantom applicator that contained shields composed of a novel tungsten alloy. Artifacts were largely limited to regions within the ovoid cap and are of no clinical interest. The second generation A3 utilizes this material for interovoid shielding.


Assuntos
Braquiterapia/instrumentação , Proteção Radiológica , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Ligas , Braquiterapia/efeitos adversos , Desenho de Equipamento , Feminino , Humanos , Imageamento por Ressonância Magnética , Método de Monte Carlo , Radiometria , Planejamento da Radioterapia Assistida por Computador , Reto/citologia , Reto/efeitos da radiação , Tomografia Computadorizada por Raios X , Tungstênio/química , Bexiga Urinária/citologia , Bexiga Urinária/efeitos da radiação
18.
Int J Radiat Oncol Biol Phys ; 72(1): 220-7, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18722273

RESUMO

PURPOSE: To investigate the potential of a novel deterministic solver, Attila, for external photon beam radiotherapy dose calculations. METHODS AND MATERIALS: Two hypothetical cases for prostate and head-and-neck cancer photon beam treatment plans were calculated using Attila and EGSnrc Monte Carlo simulations. Open beams were modeled as isotropic photon point sources collimated to specified field sizes. The sources had a realistic energy spectrum calculated by Monte Carlo for a Varian Clinac 2100 operated in a 6-MV photon mode. The Attila computational grids consisted of 106,000 elements, or 424,000 spatial degrees of freedom, for the prostate case, and 123,000 tetrahedral elements, or 492,000 spatial degrees of freedom, for the head-and-neck cases. RESULTS: For both cases, results demonstrate excellent agreement between Attila and EGSnrc in all areas, including the build-up regions, near heterogeneities, and at the beam penumbra. Dose agreement for 99% of the voxels was within the 3% (relative point-wise difference) or 3-mm distance-to-agreement criterion. Localized differences between the Attila and EGSnrc results were observed at bone and soft-tissue interfaces and are attributable to the effect of voxel material homogenization in calculating dose-to-medium in EGSnrc. For both cases, Attila calculation times were <20 central processing unit minutes on a single 2.2-GHz AMD Opteron processor. CONCLUSIONS: The methods in Attila have the potential to be the basis for an efficient dose engine for patient-specific treatment planning, providing accuracy similar to that obtained by Monte Carlo.


Assuntos
Análise de Elementos Finitos , Neoplasias de Cabeça e Pescoço/radioterapia , Método de Monte Carlo , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Masculino , Aceleradores de Partículas , Fótons/uso terapêutico , Neoplasias da Próstata/diagnóstico por imagem , Radiografia
19.
Med Phys ; 35(6): 2279-85, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18649459

RESUMO

The goal of this work was to calculate the dose distribution around a high dose-rate 192Ir brachytherapy source using a multi-group discrete ordinates code and then to compare the results with a Monte Carlo calculated dose distribution. The unstructured tetrahedral mesh discrete ordinates code Attila version 6.1.1 was used to calculate the photon kerma rate distribution in water around the Nucletron microSelectron mHDRv2 source. MCNPX 2.5.c was used to compute the Monte Carlo water photon kerma rate distribution. Two hundred million histories were simulated, resulting in standard errors of the mean of less than 3% overall. The number of energy groups, S(n) (angular order), P(n) (scattering order), and mesh elements were varied in addition to the method of analytic ray tracing to assess their effects on the deterministic solution. Water photon kerma rate matrices were exported from both codes into an in-house data analysis software. This software quantified the percent dose difference distribution, the number of points within +/- 3% and +/- 5%, and the mean percent difference between the two codes. The data demonstrated that a 5 energy-group cross-section set calculated results to within 0.5% of a 15 group cross-section set. S12 was sufficient to resolve the solution in angle. P2 expansion of the scattering cross-section was necessary to compute accurate distributions. A computational mesh with 55 064 tetrahedral elements in a 30 cm diameter phantom resolved the solution spatially. An efficiency factor of 110 with the above parameters was realized in comparison to MC methods. The Attila code provided an accurate and efficient solution of the Boltzmann transport equation for the mHDRv2 source.


Assuntos
Braquiterapia/métodos , Radioisótopos de Irídio/uso terapêutico , Radiometria/métodos , Benchmarking , Simulação por Computador , Método de Monte Carlo , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Fatores de Tempo
20.
Phys Med Biol ; 51(16): 4083-94, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16885626

RESUMO

We performed a Monte Carlo study to compare dose distributions for a Fletcher-Suit-Delclos (FSD) ovoid used with (137)Cs low-dose-rate (LDR) sources with those for a Fletcher-Williamson (FW) ovoid used with an (192)Ir pulsed-dose-rate (PDR) source for intracavitary brachytherapy of cervical cancer. We recently reported on extensive validation of Monte Carlo MCNPX models of these ovoids using radiochromic film measurements. Here, we compared these models assuming identical loading of 10, 15 and 20 mgRaEq (72, 108 and 145 cGy cm(2) h(-1), respectively) in three dose mesh planes: one perpendicular to the ovoid long axis bisecting the ovoid, one parallel to and displaced 2 cm medially from the long axis of the ovoid, and a 'rectal' plane perpendicular to the long axis located 1 cm distal to the distal face of the ovoid cap. The FW ovoid delivered slightly higher doses (within 10%) over all loadings to regions away from the bladder and rectal shields when compared to the FSD ovoid. However, the FW ovoid delivered much higher doses (>50%) in regions near these shields. In the rectal plane, the FW ovoid delivered a slightly higher dose, but within the region directly behind the rectal shield, the FW ovoid delivered a dose ranging from +35% to -35% of the FSD dose distribution. We attribute these differences to intrinsic differences in source characteristics (radial dose function and anisotropy factors) and extrinsic factors such as the solid-angle effect between sources and shields and applicator design.


Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Carga Corporal (Radioterapia) , Simulação por Computador , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Modelos Biológicos , Modelos Estatísticos , Método de Monte Carlo , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA