Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133216, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38101016

RESUMO

The present study depicts the true failed scenario of the arsenic (As) removal units (ARU) in West Bengal by evaluating their treated water quality. Annual As removal efficiency of the 12 studied ARUs range between 35.2% and 82.6%. A comprehensive physico-chemical parameters and trace elements analysis find almost 25% and 16.7% of treated drinking water samples with poor water quality index (WQI) and high heavy metal evaluation index (HEI), respectively. The pond-based water treatment plant maintains the production of continuous As-safe water with a range between 60.2% and 66.7% due to its high Fe/As ratio. It's a discontent concluding the treated drinking water of the groundwater based-ARUs were observed with sufficient As mediated cancer risk (3 ×10-3). The non-cancer risk (HQ) of As is safe for the surface water treatment plant (0.38), whereas it is threatening for the groundwater based-ARUs (7.44). However, the drinking water samples are safe in view of HQ from the other trace elements like Hg, Al, Cd, Cr, Pb, F- and NO3-. Small scale ARU could be a feasible mitigation strategy in reducing the As menace in the long run if the plants are maintained correctly. Nevertheless, surface treated water is the most sustainable solution as withdrawal of groundwater for drinking purpose is not a viable practice.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Oligoelementos , Poluentes Químicos da Água , Arsênio/análise , Qualidade da Água , Água Potável/análise , Oligoelementos/análise , Monitoramento Ambiental , Fatores Socioeconômicos , Índia , Água Subterrânea/química , Poluentes Químicos da Água/análise , Medição de Risco
2.
Environ Sci Pollut Res Int ; 30(27): 70950-70973, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37156951

RESUMO

Rice arsenic (As) contamination and its consumption poses a significant health threat to humans. The present study focuses on the contribution of arsenic, micronutrients, and associated benefit-risk assessment through cooked rice from rural (exposed and control) and urban (apparently control) populations. The mean decreased percentages of As from uncooked to cooked rice for exposed (Gaighata), apparently control (Kolkata), and control (Pingla) areas are 73.8, 78.5, and 61.3%, respectively. The margin of exposure through cooked rice (MoEcooked rice) < 1 signifies the existence of health risk for all the studied exposed and control age groups. The respective contributions of iAs (inorganic arsenic) in uncooked and cooked rice are nearly 96.6, 94.7, and 100% and 92.2, 90.2, and 94.2% from exposed, apparently control, and control areas. LCR analysis for the exposed, apparently control, and control populations (adult male: 2.1 × 10-3, 2.8 × 10-4, 4.7 × 10-4; adult female: 1.9 × 10-3, 2.1 × 10-4, 4.4 × 10-4; and children: 5.8 × 10-4, 4.9 × 10-5, 1.1 × 10-4) through cooked rice is higher than the recommended value, i.e., 1 × 10-6, respectively, whereas HQ > 1 has been observed for all age groups from the exposed area and adult male group from the control area. Adults and children from rural area showed that ingestion rate (IR) and concentration are the respective influencing factors towards cooked rice As, whereas IR is solely responsible for all age groups from urban area. A vital suggestion is to reduce the IR of cooked rice for control population to avoid the As-induced health risks. The average intake (µg/day) of micronutrients is in the order of Zn > Se for all the studied populations and Se intake is lower for the exposed population (53.9) compared to the apparently control (140) and control (208) populations. Benefit-risk assessment supported that the Se-rich values in cooked rice are effective in avoiding the toxic effect and potential risk from the associated metal (As).


Assuntos
Arsênio , Oryza , Adulto , Criança , Masculino , Feminino , Humanos , Arsênio/análise , População Urbana , Exposição Ambiental/análise , Contaminação de Alimentos/análise , Medição de Risco , Índia
3.
Environ Pollut ; 293: 118561, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843851

RESUMO

Arsenic (As) in rice is posing a serious threat worldwide and consumption of As contaminated rice by human is causing health risks. A pot experiment with different levels of sulfate dosage (0, 20, 40, 60 and 80 mg/kg) was set up in this study to explore the influence of sulfate fertilizer on rice plant growth, yield, and As accumulation in rice grain. Apart from As bioaccumulation in rice grains, the As fraction of cooked rice was quantified, and the health risks associated with cooked rice consumption were also investigated. The sulfate application significantly (p ≤ 0.05) enhanced the chlorophyll, tiller number, grains per panicle, grain and biomass yield under As stressed condition. The sulfate application also reduced the oxidative stress and antioxidant activity in rice plants. Sulfate fertigation improved the accumulation of total sulfur (S) and reduced the uptake and translocation of As in rice plants. Arsenic concentration in rice grain was reduced by 50.1% in S80 treatment (80 mg of sulfate/kg of soil) as compared to S0 set. The reduction percentage of As in cooked parboiled and sunned rice with correspond to raw rice ranged from 55.9 to 74% and 40.3-60.7%, respectively. However, the sulfate application and cooking of parboiled rice reduced the potential non-cancer and cancer risk as compared to sunned rice. The S80 treatment and cooking of parboiled rice reduce the As exposure for both children and adults by 51% as compared to cooked sunned rice under S80 treatment and this trend was similar for all treatments. Therefore, sulfate application in soil can be recommended to produce safer rice grains and subsequent cooking of parboiled rice grain with low-As contaminated water need to be done to avoid any potential health risk in As endemic areas.


Assuntos
Arsênio , Oryza , Arsênio/análise , Bioacumulação , Criança , Culinária , Contaminação de Alimentos/análise , Humanos , Medição de Risco , Sulfatos
4.
Environ Geochem Health ; 43(8): 3027-3053, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33492569

RESUMO

Health exposure and perception of risk assessment have been evaluated on the populations exposed to different arsenic levels in drinking water (615, 301, 48, 20 µg/l), rice grain (792, 487, 588, 569 µg/kg) and vegetables (283, 187, 238, 300 µg/kg) from four villages in arsenic endemic Gaighata block, West Bengal. Dietary arsenic intake rates for the studied populations from extremely highly, highly, moderately, and mild arsenic-exposed areas were 56.03, 28.73, 11.30, and 9.13 µg/kg bw/day, respectively. Acute and chronic effects of arsenic toxicity were observed in ascending order from mild to extremely highly exposed populations. Statistical interpretation using 'ANOVA' proves a significant relationship between drinking water and biomarkers, whereas "two-tailed paired t test" justifies that the consumption of arsenic-contaminated dietary intakes is the considerable pathway of health risk exposure. According to the risk thermometer (SAMOE), drinking water belongs to risk class 5 (extremely highly and highly exposed area) and 4 (moderately and mild exposed area) category, whereas rice grain and vegetables belong to risk class 5 and 4, respectively, for all the differently exposed populations. The carcinogenic (ILCR) and non-carcinogenic risks (HQ) through dietary intakes for adults were much higher than the recommended threshold level, compared to the children. Supplementation of arsenic-safe drinking water and nutritional food is strictly recommended to overcome the severe arsenic crisis.


Assuntos
Água Potável , Arsênio/análise , Arsênio/toxicidade , Água Potável/análise , Exposição Ambiental/análise , Humanos , Índia/epidemiologia , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Biol Trace Elem Res ; 199(3): 1170-1178, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32557102

RESUMO

Arsenic (As) contamination is endemic in West Bengal, India. Arsenic exposure through mushroom is lethal to health. Pleurotus sp. is globally consumed as food for its medicinal and nutritional values. This study was performed to evaluate the arsenic accumulation in mushroom through arsenic biomagnified rice straw substrate in relation to health risk assessment. Arsenic concentrations were higher in P. ostreatus (12.577 mg/kg DW) and Pleurotus sp. (12.446 mg/kg DW) cultivated in arsenic biomagnified rice straw as compared with P. ostreatus (0.472 mg/kg DW) and Pleurotus sp. (0.434 mg/kg DW) cultivated in non-contaminant rice straw; respectively. The bio-concentration factor (BCF) value of arsenic was highest in stem at 3rd flush for both P. ostreatus and Pleurotus sp. The health risk index (HRI) based on dietary intake of these arsenic biomagnified mushrooms was found moderately higher in both the species, so higher intake of these mushrooms will put people at health risk.


Assuntos
Agaricales , Arsênio , Pleurotus , Humanos , Índia , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA