Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Lab Chip ; 12(15): 2678-86, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22596243

RESUMO

We demonstrate a cellphone-based rapid-diagnostic-test (RDT) reader platform that can work with various lateral flow immuno-chromatographic assays and similar tests to sense the presence of a target analyte in a sample. This compact and cost-effective digital RDT reader, weighing only ~65 g, mechanically attaches to the existing camera unit of a cellphone, where various types of RDTs can be inserted to be imaged in reflection or transmission modes under light-emitting diode (LED)-based illumination. Captured raw images of these tests are then digitally processed (within less than 0.2 s per image) through a smart application running on the cellphone for validation of the RDT, as well as for automated reading of its diagnostic result. The same smart application then transmits the resulting data, together with the RDT images and other related information (e.g., demographic data), to a central server, which presents the diagnostic results on a world map through geo-tagging. This dynamic spatio-temporal map of various RDT results can then be viewed and shared using internet browsers or through the same cellphone application. We tested this platform using malaria, tuberculosis (TB) and HIV RDTs by installing it on both Android-based smartphones and an iPhone. Providing real-time spatio-temporal statistics for the prevalence of various infectious diseases, this smart RDT reader platform running on cellphones might assist healthcare professionals and policymakers to track emerging epidemics worldwide and help epidemic preparedness.


Assuntos
Telefone Celular/instrumentação , Testes Diagnósticos de Rotina/instrumentação , Telefone Celular/economia , Testes Diagnósticos de Rotina/economia , HIV/isolamento & purificação , Infecções por HIV/diagnóstico , Humanos , Processamento de Imagem Assistida por Computador , Malária Falciparum/diagnóstico , Mycobacterium/isolamento & purificação , Plasmodium falciparum/isolamento & purificação , Fatores de Tempo , Tuberculose/diagnóstico
2.
Anal Cell Pathol (Amst) ; 35(4): 229-47, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22433451

RESUMO

The recent revolution in digital technologies and information processing methods present important opportunities to transform the way optical imaging is performed, particularly toward improving the throughput of microscopes while at the same time reducing their relative cost and complexity. Lensfree computational microscopy is rapidly emerging toward this end, and by discarding lenses and other bulky optical components of conventional imaging systems, and relying on digital computation instead, it can achieve both reflection and transmission mode microscopy over a large field-of-view within compact, cost-effective and mechanically robust architectures. Such high throughput and miniaturized imaging devices can provide a complementary toolset for telemedicine applications and point-of-care diagnostics by facilitating complex and critical tasks such as cytometry and microscopic analysis of e.g., blood smears, Pap tests and tissue samples. In this article, the basics of these lensfree microscopy modalities will be reviewed, and their clinically relevant applications will be discussed.


Assuntos
Técnicas Citológicas/métodos , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Algoritmos , Animais , Análise Custo-Benefício , Técnicas Citológicas/economia , Técnicas Citológicas/instrumentação , Diagnóstico por Imagem/economia , Diagnóstico por Imagem/instrumentação , Humanos , Processamento de Imagem Assistida por Computador/economia , Processamento de Imagem Assistida por Computador/instrumentação , Reprodutibilidade dos Testes , Telemedicina/economia , Telemedicina/instrumentação , Telemedicina/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-22256247

RESUMO

We report a field-portable lensless on-chip microscope with a lateral resolution of <1 µm and a large field-of-view of ~24 mm(2). This microscope is based on digital in-line holography and a pixel super-resolution algorithm to process multiple lensfree holograms and obtain a single high-resolution hologram. In its compact and cost-effective design, we utilize 23 light emitting diodes butt-coupled to 23 multi-mode optical fibers, and a simple optical filter, with no moving parts. Weighing only ~95 grams, we demonstrate the performance of this field-portable microscope by imaging various objects including human malaria parasites in thin blood smears.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Microscopia/economia , Microscopia/instrumentação , Telemedicina/economia , Telemedicina/instrumentação , Animais , Análise Custo-Benefício , Desenho de Equipamento , Holografia , Humanos , Lentes , Malária/parasitologia , Parasitos/citologia
4.
Lab Chip ; 10(18): 2419-23, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20694255

RESUMO

Protection of human health and well-being through water quality management is an important goal for both the developed and the developing parts of the world. In the meantime, insufficient disinfection techniques still fail to eliminate pathogenic contaminants in freshwater as well as recreational water resources. Therefore, there is a significant need for screening of water quality to prevent waterborne outbreaks and incidents of water-related diseases. Toward this end, here we investigate the use of a field-portable and cost-effective lensfree holographic microscope to image and detect pathogenic protozoan parasites such as Giardia Lamblia and Cryptosporidium Parvum at low concentration levels. This compact lensless microscope (O. Mudanyali et al., Lab Chip, 2010, 10, 1417-1428), weighing approximately 46 grams, achieves a numerical aperture of approximately 0.1-0.2 over an imaging field of view that is more than an order of magnitude larger than a typical 10X objective lens, and therefore may provide an important high-throughput analysis tool for combating waterborne diseases especially in resource limited settings.


Assuntos
Cryptosporidium parvum/isolamento & purificação , Giardia lamblia/isolamento & purificação , Microscopia/economia , Microscopia/métodos , Água/parasitologia , Animais , Análise Custo-Benefício , Holografia
5.
Lab Chip ; 10(11): 1417-28, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20401422

RESUMO

Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing approximately 46 grams with dimensions smaller than 4.2 cm x 4.2 cm x 5.8 cm that achieves sub-cellular resolution over a large field of view of approximately 24 mm(2). This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings.


Assuntos
Holografia/instrumentação , Lentes , Iluminação/instrumentação , Microfluídica/instrumentação , Microscopia/instrumentação , Telemedicina/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
6.
Anal Chem ; 82(9): 3736-44, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20359168

RESUMO

Characterization of leukocytes is an integral part of blood analysis and blood-based diagnostics. In the present paper, we combine lensless holographic imaging with antibody microarrays for rapid and multiparametric analysis of leukocytes from human blood. Monoclonal antibodies (Abs) specific for leukocyte surface antigens (CD4 and CD8) and cytokines (TNF-alpha, IFN-gamma, IL-2) were printed in an array so as to juxtapose cell capture and cytokine detection antibody (Ab) spots. Integration of Ab microarrays into a microfluidic flow chamber (4 muL volume) followed by incubation with human blood resulted in capture of CD4 and CD8 T-cells on specific Ab spots. On-chip mitogenic activation of these cells induced release of cytokine molecules that were subsequently captured on neighboring anticytokine Ab spots. The binding of IL-2, TNF-alpha, and IFN-gamma molecules on their respective Ab spots was detected using horseradish peroxidase (HRP)-labeled anticytokine Abs and a visible color reagent. Lensfree holographic imaging was then used to rapidly ( approximately 4 s) enumerate CD4 and CD8 T-lymphocytes captured on Ab spots and to quantify the cytokine signal emanating from IL-2, TNF-alpha, and IFN-gamma spots on the same chip. To demonstrate the utility of our approach for infectious disease monitoring, blood samples of healthy volunteers and human immunodeficiency virus (HIV)-infected patients were analyzed to determine the CD4/CD8 ratio, an important HIV/AIDS diagnostic marker. The ratio obtained by lensfree on-chip imaging of CD4 and CD8 T-cells captured on Ab spots was in close agreement with conventional microscopy-based cell counting. The present paper, describing tandem use of Ab microarrays and lensfree holographic imaging, paves the way for future development of miniature cytometry devices for multiparametric blood analysis at the point of care or in a resource-limited setting.


Assuntos
Anticorpos , Holografia , Contagem de Leucócitos , Análise em Microsséries , Humanos , Análise em Microsséries/economia , Análise em Microsséries/instrumentação , Análise em Microsséries/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA