Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
ACS Synth Biol ; 10(5): 907-910, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33977723

RESUMO

Engineering biology is being applied toward solving or mitigating some of the greatest challenges facing society. As with many other rapidly advancing technologies, the development of these powerful tools must be considered in the context of ethical uses for personal, societal, and/or environmental advancement. Researchers have a responsibility to consider the diverse outcomes that may result from the knowledge and innovation they contribute to the field. Together, we developed a Statement of Ethics in Engineering Biology Research to guide researchers as they incorporate the consideration of long-term ethical implications of their work into every phase of the research lifecycle. Herein, we present and contextualize this Statement of Ethics and its six guiding principles. Our goal is to facilitate ongoing reflection and collaboration among technical researchers, social scientists, policy makers, and other stakeholders to support best outcomes in engineering biology innovation and development.


Assuntos
Bioengenharia/ética , Pesquisa Biomédica/ética , Invenções/ética , Pessoal Administrativo/ética , Comunicação , Saúde Ambiental , Humanos , Pessoal de Laboratório Médico/ética , Saúde Pública , Projetos de Pesquisa , Pesquisadores/ética , Responsabilidade Social
2.
ACS Synth Biol ; 9(7): 1581-1590, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32525658

RESUMO

Robustness to temperature variation is an important specification in biomolecular circuit design. While the cancellation of parametric temperature dependencies has been shown to improve the temperature robustness of the period in a synthetic oscillator design, the performance of other biomolecular circuit designs in different temperature conditions is relatively unclear. Using a combination of experimental measurements and mathematical models, we assessed the temperature robustness of two biomolecular circuit motifs-a negative feedback loop and a feedforward loop. We found that the measured responses of both the circuits changed with temperature, both in the amplitude and in the transient response. We also found that, in addition to the cancellation of parametric temperature dependencies, certain parameter regimes could facilitate the temperature robustness of the negative feedback loop, although at a performance cost. We discuss these parameter regimes in the context of the measured data for the negative feedback loop. These results should help develop a framework for assessing and designing temperature robustness in biomolecular circuits.


Assuntos
Retroalimentação Fisiológica , Modelos Biológicos , Fator de Transcrição AraC/genética , Escherichia coli/metabolismo , Expressão Gênica , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Temperatura
3.
Arch Biochem Biophys ; 674: 108045, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326518

RESUMO

The T7 bacteriophage RNA polymerase (T7 RNAP) serves as a model for understanding RNA synthesis, as a tool for protein expression, and as an actuator for synthetic gene circuit design in bacterial cells and cell-free extract. T7 RNAP is an attractive tool for orthogonal protein expression in bacteria owing to its compact single subunit structure and orthogonal promoter specificity. Understanding the mechanisms underlying T7 RNAP regulation is important to the design of engineered T7-based transcription factors, which can be used in gene circuit design. To explore regulatory mechanisms for T7 RNAP-driven expression, we developed a rapid and cost-effective method to characterize engineered T7-based transcription factors using cell-free protein synthesis and an acoustic liquid handler. Using this method, we investigated the effects of the tetracycline operator's proximity to the T7 promoter on the regulation of T7 RNAP-driven expression. Our results reveal a mechanism for regulation that functions by interfering with the transition of T7 RNAP from initiation to elongation and validates the use of the method described here to engineer future T7-based transcription factors.


Assuntos
Bacteriófago T7/enzimologia , RNA Polimerases Dirigidas por DNA/metabolismo , Engenharia Genética/métodos , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas Virais/metabolismo , Acústica , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Regiões Operadoras Genéticas , Reação em Cadeia da Polimerase , Iniciação da Transcrição Genética , Proteínas Virais/genética
4.
Mol Syst Biol ; 12(5): 869, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27193783

RESUMO

Engineered bacterial sensors have potential applications in human health monitoring, environmental chemical detection, and materials biosynthesis. While such bacterial devices have long been engineered to differentiate between combinations of inputs, their potential to process signal timing and duration has been overlooked. In this work, we present a two-input temporal logic gate that can sense and record the order of the inputs, the timing between inputs, and the duration of input pulses. Our temporal logic gate design relies on unidirectional DNA recombination mediated by bacteriophage integrases to detect and encode sequences of input events. For an E. coli strain engineered to contain our temporal logic gate, we compare predictions of Markov model simulations with laboratory measurements of final population distributions for both step and pulse inputs. Although single cells were engineered to have digital outputs, stochastic noise created heterogeneous single-cell responses that translated into analog population responses. Furthermore, when single-cell genetic states were aggregated into population-level distributions, these distributions contained unique information not encoded in individual cells. Thus, final differentiated sub-populations could be used to deduce order, timing, and duration of transient chemical events.


Assuntos
Técnicas Biossensoriais/métodos , Escherichia coli/genética , Bacteriófagos/enzimologia , Engenharia Genética , Humanos , Integrases/metabolismo , Cadeias de Markov , Recombinação Genética , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA