Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Insects ; 15(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38535399

RESUMO

Microsporidiosis, which is caused by the pathogen Vairimorpha ceranae, is a prevalent disease in the honey bee (Apis mellifera) and might lead to significant adult honey bee mortality. In this study, we conducted an annual survey of the mature spore load of V. ceranae in the guts of nurse bees and forager bees in the apiary of National Chung Hsing University (NCHU) in Taiwan. The results indicated that, on average, honey bees hosted approximately 2.13 × 106 mature spore counts (MSCs)/bee in their guts throughout the entire year. The highest number of MSCs was 6.28 × 106 MSCs/bee, which occurred in April 2020, and the lowest number of MSCs was 5.08 × 105 MSCs/bee, which occurred in November 2020. Furthermore, the guts of forager bees had significantly higher (>58%) MSCs than those of nurse bees. To evaluate the potential of the probiotic to treat microsporidiosis, the lactic acid bacterium Leuconostoc mesenteroides TBE-8 was applied to honey bee colonies. A significant reduction (>53%) in MSCs following probiotic treatment was observed, indicating the potential of probiotic treatment for managing microsporidiosis. This research provided information on V. ceranae MSCs in the honey bee gut at NCHU in Taiwan and the MSCs' correlation with the annual season. Furthermore, a potential probiotic treatment for microsporidiosis was assessed for future management.

2.
J Vis Exp ; (197)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37677031

RESUMO

The mustard aphid (L. erysimi) is a pest that infests various cruciferous crops and transmits plant viruses. To achieve eco-friendly pest management, entomopathogenic fungi (EPF) are potential microbial control agents for controlling this pest. Therefore, virulence screening of EPF isolates under Petri dish conditions is necessary before field application. However, the mustard aphid is a parthenogenetic insect, making it difficult to record data during Petri dish experiments. A modified system for detached-leaf bioassays was developed to address this issue, using a micro-sprayer to inoculate conidia onto aphids and prevent drowning by facilitating air-drying after spore suspension. The system maintained high relative humidity throughout the observation period, and the leaf disc remained fresh for over ten days, allowing parthenogenetic reproduction of the aphids. To prevent offspring buildup, a process of daily removal using a painting brush was implemented. This protocol demonstrates a stable system for evaluating the virulence of EPF isolates against mustard aphids or other aphids, enabling the selection of potential isolates for aphid control.


Assuntos
Afídeos , Animais , Mostardeira , Fungos , Esporos Fúngicos , Insetos
3.
J Invertebr Pathol ; 186: 107687, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34728219

RESUMO

Recent outbreaks of sacbrood virus (SBV) have caused serious epizootic disease in Apis cerana populations across Asia including Taiwan. Earlier phylogenetic analyses showed that cross-infection of AcSBV and AmSBV in both A. cerana and A. mellifera seems common, raising a concern of cross-infection intensifying the risk of disease resurgence in A. cerana. In this study, we analyzed the dynamics of cross-infection in three different types of apiaries (A. mellifera-only, A. cerana-only and two species co-cultured apiaries) over one year in Taiwan. Using novel, genotype-specific primer sets, we showed that SBV infection status varies across apiaries: AmSBV-AM and AcSBV-AC were the major genotype in the A. mellifera-only and the A. cerana-only apiaries, respectively, while AmSBV-AC and AcSBV-AC were the dominant genotypes in the co-cultured apiaries. Interestingly, co-cultured apiaries were among the only apiary type that harbored all variants and dual infections (i.e., AC and AM genotype co-infection in a single sample), indicating the interactions between hosts may form a conduit for cross-infection. The cross-infection between the two honey bee species appears to occur in a regular cycle with temporal fluctuation of AmSBV-AC and AcSBV-AC prevalence synchronized to each other in the co-cultured apiaries. Artificial infection of AcSBV in A. mellifera workers showed the suppression of viral replication, suggesting the potential of A. mellifera serving as a AcSBV reservoir that may contribute to virus spillover. Furthermore, the survival rate of A. cerana larvae was significantly reduced after artificial infections of both SBVs, indicating fitness costs of cross-infection on A. cerana and thus a high risk of disease resurgence in co-cultured apiaries. Our field and laboratory data provide baseline information that facilitates understanding of the risk of SBV cross-infection, and highlights the urgent need of SBV monitoring in co-cultured apiaries.


Assuntos
Criação de Abelhas , Abelhas/virologia , Vírus de RNA/fisiologia , Animais , Evolução Molecular , Medição de Risco , Especificidade da Espécie , Taiwan
4.
Sci Rep ; 11(1): 15028, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294840

RESUMO

Deformed wing virus (DWV) prevalence is high in honey bee (Apis mellifera) populations. The virus infects honey bees through vertical and horizontal transmission, leading to behavioural changes, wing deformity, and early mortality. To better understand the impacts of viral infection in the larval stage of honey bees, artificially reared honey bee larvae were infected with DWV (1.55 × 1010 copies/per larva). No significant mortality occurred in infected honey bee larvae, while the survival rates decreased significantly at the pupal stage. Examination of DWV replication revealed that viral replication began at 2 days post inoculation (d.p.i.), increased dramatically to 4 d.p.i., and then continuously increased in the pupal stage. To better understand the impact of DWV on the larval stage, DWV-infected and control groups were subjected to transcriptomic analysis at 4 d.p.i. Two hundred fifty-five differentially expressed genes (DEGs) (fold change ≥ 2 or ≤ -2) were identified. Of these DEGs, 168 genes were downregulated, and 87 genes were upregulated. Gene Ontology (GO) analysis showed that 141 DEGs (55.3%) were categorized into molecular functions, cellular components and biological processes. One hundred eleven genes (38 upregulated and 73 downregulated) were annotated by KO (KEGG Orthology) pathway mapping and involved metabolic pathways, biosynthesis of secondary metabolites and glycine, serine and threonine metabolism pathways. Validation of DEGs was performed, and the related gene expression levels showed a similar tendency to the DEG predictions at 4 d.p.i.; cell wall integrity and stress response component 1 (wsc1), cuticular protein and myo-inositol 2-dehydrogenase (iolG) were significantly upregulated, and small conductance calcium-activated potassium channel protein (SK) was significantly downregulated at 4 d.p.i. Related gene expression levels at different d.p.i. revealed that these DEGs were significantly regulated from the larval stage to the pupal stage, indicating the potential impacts of gene expression levels from the larval to the pupal stages. Taken together, DWV infection in the honey bee larval stage potentially influences the gene expression levels from larvae to pupae and reduces the survival rate of the pupal stage. This information emphasizes the consequences of DWV prevalence in honey bee larvae for apiculture.


Assuntos
Abelhas/genética , Abelhas/virologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Vírus de RNA , Transcriptoma , Doenças dos Animais/genética , Doenças dos Animais/mortalidade , Doenças dos Animais/virologia , Animais , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Larva , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA