Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Toxicol Sci ; 197(1): 38-52, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37788119

RESUMO

In vitro preclinical drug-induced liver injury (DILI) risk assessment relies largely on the use of hepatocytes to measure drug-specific changes in cell function or viability. Unfortunately, this does not provide indications toward the immunogenicity of drugs and/or the likelihood of idiosyncratic reactions in the clinic. This is because the molecular initiating event in immune DILI is an interaction of the drug-derived antigen with MHC proteins and the T-cell receptor. This study utilized immune cells from drug-naïve donors, recently established immune cell coculture systems and blinded compounds with and without DILI liabilities to determine whether these new methods offer an improvement over established assessment methods for the prediction of immune-mediated DILI. Ten blinded test compounds (6 with known DILI liabilities; 4 with lower DILI liabilities) and 5 training compounds, with known T-cell-mediated immune reactions in patients, were investigated. Naïve T-cells were activated with 4/5 of the training compounds (nitroso sulfamethoxazole, vancomycin, Bandrowski's base, and carbamazepine) and clones derived from the priming assays were activated with drug in a dose-dependent manner. The test compounds with DILI liabilities did not stimulate T-cell proliferative responses during dendritic cell-T-cell coculture; however, CD4+ clones displaying reactivity were detected toward 2 compounds (ciprofloxacin and erythromycin) with known liabilities. Drug-responsive T-cells were not detected with the compounds with lower DILI liabilities. This study provides compelling evidence that assessment of intrinsic drug immunogenicity, although complex, can provide valuable information regarding immune liabilities of some compounds prior to clinical studies or when immune reactions are observed in patients.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatócitos , Humanos , Células Cultivadas , Hepatócitos/metabolismo , Técnicas de Cocultura , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Medição de Risco
2.
Chem Res Toxicol ; 31(3): 165-167, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29436218

RESUMO

It is unclear whether priming of naïve T cells to drugs is detectable in healthy human donors expressing different human leukocyte antigen (HLA) alleles. Thus, we examined T cell priming with drugs associated with HLA risk alleles and control compounds in 14 HLA-typed donors. Nitroso sulfamethoxazole and piperacillin activated T cells from all donors, whereas responses to carbamazepine and oxypurinol were only seen in donors expressing HLA-B*15:02 and HLA-B*58:01, respectively. Weak flucloxacillin-specific T cell responses were detected in donors expressing HLA-B*57:01 and HLA-B*58:01. These data show that the priming of T cells with certain drugs is skewed toward donors expressing specific HLA alleles.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/imunologia , Antígenos HLA/imunologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Anti-Infecciosos/efeitos adversos , Anti-Infecciosos/imunologia , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/imunologia , Carbamazepina/efeitos adversos , Carbamazepina/imunologia , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/imunologia , Antígenos HLA-B/imunologia , Humanos , Compostos Nitrosos/efeitos adversos , Compostos Nitrosos/imunologia , Oxipurinol/efeitos adversos , Oxipurinol/imunologia , Piperacilina/efeitos adversos , Piperacilina/imunologia , Sulfametoxazol/efeitos adversos , Sulfametoxazol/imunologia , Linfócitos T/imunologia
3.
Chem Res Toxicol ; 30(12): 2097-2099, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29148816

RESUMO

The risk of developing hypersensitivity to alternative antibiotics is a concern for penicillin hypersensitive patients and healthcare providers. Herein we use piperacillin hypersensitivity as a model to explore the reactivity of drug-specific IgG against alternative ß-lactam protein adducts. Mass spectrometry was used to show the drugs (amoxicillin, flucloxacillin, benzyl penicillin, aztreonam, and piperacillin) bind to similar lysine residues on the protein carrier bovine serum albumin. However, the hapten-specific IgG antibodies found in piperacillin hypersensitive patient plasma did not bind to other ß-lactam protein conjugates. These data outline the fine specificity of piperacillin-specific IgG antibodies that circulate in patients with hypersensitivity.


Assuntos
Antibacterianos/farmacologia , Hipersensibilidade a Drogas/tratamento farmacológico , Imunoglobulina G/imunologia , Piperacilina/imunologia , beta-Lactamas/antagonistas & inibidores , Hipersensibilidade a Drogas/imunologia , Humanos , Ligação Proteica/efeitos dos fármacos , beta-Lactamas/metabolismo
4.
Chem Res Toxicol ; 30(1): 239-259, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27806199

RESUMO

The workshop on "New Approaches to Investigate Drug-Induced Hypersensitivity" was held on June 5, 2014 at the Foresight Center, University of Liverpool. The aims of the workshop were to (1) discuss our current understanding of the genetic, clinical, and chemical basis of small molecule drug hypersensitivity, (2) highlight the current status of assays that might be developed to predict potential drug immunogenicity, and (3) identify the limitations, knowledge gaps, and challenges that limit the use of these assays and utilize the knowledge gained from the workshop to develop a pathway to establish new and improved assays that better predict drug-induced hypersensitivity reactions during the early stages of drug development. This perspective reviews the clinical and immunological bases of drug hypersensitivity and summarizes various experts' views on the different topics covered during the meeting.


Assuntos
Hipersensibilidade a Drogas , Animais , Bioensaio , Hipersensibilidade a Drogas/genética , Hipersensibilidade a Drogas/imunologia , Indústria Farmacêutica , Predisposição Genética para Doença , Humanos , Complexo Principal de Histocompatibilidade/imunologia , Fenótipo , Fatores de Risco
5.
Nat Rev Drug Discov ; 12(4): 306-24, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23535934

RESUMO

Immunomodulatory biologics, which render their therapeutic effects by modulating or harnessing immune responses, have proven their therapeutic utility in several complex conditions including cancer and autoimmune diseases. However, unwanted adverse reactions--including serious infections, malignancy, cytokine release syndrome, anaphylaxis and hypersensitivity as well as immunogenicity--pose a challenge to the development of new (and safer) immunomodulatory biologics. In this article, we assess the safety issues associated with immunomodulatory biologics and discuss the current approaches for predicting and mitigating adverse reactions associated with their use. We also outline how these approaches can inform the development of safer immunomodulatory biologics.


Assuntos
Desenho de Fármacos , Fatores Imunológicos/efeitos adversos , Gestão de Riscos/métodos , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Medição de Risco/métodos
6.
Nat Rev Drug Discov ; 10(4): 292-306, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21455238

RESUMO

The normal metabolism of drugs can generate metabolites that have intrinsic chemical reactivity towards cellular molecules, and therefore have the potential to alter biological function and initiate serious adverse drug reactions. Here, we present an assessment of the current approaches used for the evaluation of chemically reactive metabolites. We also describe how these approaches are being used within the pharmaceutical industry to assess and minimize the potential of drug candidates to cause toxicity. At early stages of drug discovery, iteration between medicinal chemistry and drug metabolism can eliminate perceived reactive metabolite-mediated chemical liabilities without compromising pharmacological activity or the need for extensive safety evaluation beyond standard practices. In the future, reactive metabolite evaluation may also be useful during clinical development for improving clinical risk assessment and risk management. Currently, there remains a huge gap in our understanding of the basic mechanisms that underlie chemical stress-mediated adverse reactions in humans. This review summarizes our views on this complex topic, and includes insights into practices considered by the pharmaceutical industry.


Assuntos
Desenho de Fármacos , Descoberta de Drogas/métodos , Preparações Farmacêuticas/metabolismo , Animais , Indústria Farmacêutica/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Medição de Risco/métodos , Gestão de Riscos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA