Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 47(3): 620-628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38479886

RESUMO

One of the members of CYP, a monooxygenase, CYP2A13 is involved in the metabolism of nicotine, coumarin, and tobacco-specific nitrosamine. Genetic polymorphisms have been identified in CYP2A13, with reported loss or reduction in enzymatic activity in CYP2A13 allelic variants. This study aimed to unravel the mechanism underlying the diminished enzymatic activity of CYP2A13 variants by investigating their three-dimensional structures through molecular dynamics (MD) simulations. For each variant, MD simulations of 1000 ns were performed, and the obtained results were compared with those of the wild type. The findings indicated alterations in the interaction with heme in CYP2A13.4, .6, .8, and .9. In the case of CYP2A13.5, observable effects on the helix structure related to the interaction with the redox partner were identified. These conformational changes were sufficient to cause a decrease in enzyme activity in the variants. Our findings provide valuable insights into the molecular mechanisms associated with the diminished activity in the CYP2A13 polymorphisms.


Assuntos
Simulação de Dinâmica Molecular , Nitrosaminas , Polimorfismo Genético , Nicotina , Oxirredução , Citocromo P-450 CYP2A6/genética
2.
Drug Metab Dispos ; 51(12): 1561-1568, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37775333

RESUMO

Cytochrome P450 4F2 (CYP4F2) is an enzyme that is involved in the metabolism of arachidonic acid (AA), vitamin E and K, and xenobiotics including drugs. CYP4F2*3 polymorphism (rs2108622; c.1297G>A; p.Val433Met) has been associated with hypertension, ischemic stroke, and variation in the effectiveness of the anticoagulant drug warfarin. In this study, we characterized wild-type CYP4F2 and 28 CYP4F2 variants, including a Val433Met substitution, detected in 8380 Japanese subjects. The CYP4F2 variants were heterologously expressed in 293FT cells to measure the concentrations of CYP4F2 variant holoenzymes using carbon monoxide-reduced difference spectroscopy, where the wild type and 18 holoenzyme variants showed a peak at 450 nm. Kinetic parameters [Vmax , substrate concentration producing half of Vmax (S50 ), and intrinsic clearance (CL int ) as Vmax /S50 ] of AA ω-hydroxylation were determined for the wild type and 21 variants with enzyme activity. Compared with the wild type, two variants showed significantly decreased CL int values for AA ω-hydroxylation. The values for seven variants could not be determined because no enzymatic activity was detected at the highest substrate concentration used. Three-dimensional structural modeling was performed to determine the reason for reduced enzymatic activity of the CYP4F2 variants. Our findings contribute to a better understanding of CYP4F2 variant-associated diseases and possible future therapeutic strategies. SIGNIFICANCE STATEMENT: CYP4F2 is involved in the metabolism of arachidonic acid and vitamin K, and CYP4F2*3 polymorphisms have been associated with hypertension and variation in the effectiveness of the anticoagulant drug warfarin. This study presents a functional analysis of 28 CYP4F2 variants identified in Japanese subjects, demonstrating that seven gene polymorphisms cause loss of CYP4F2 function, and proposes structural changes that lead to altered function.


Assuntos
Família 4 do Citocromo P450 , Hipertensão , Varfarina , Humanos , Anticoagulantes , Ácido Araquidônico/metabolismo , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , População do Leste Asiático , Hidroxilação
3.
J Pers Med ; 11(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540768

RESUMO

Cytochrome P450 2C9 (CYP2C9) is an important drug-metabolizing enzyme that contributes to the metabolism of approximately 15% of clinically used drugs, including warfarin, which is known for its narrow therapeutic window. Interindividual differences in CYP2C9 enzymatic activity caused by CYP2C9 genetic polymorphisms lead to inconsistent treatment responses in patients. Thus, in this study, we characterized the functional differences in CYP2C9 wild-type (CYP2C9.1), CYP2C9.2, CYP2C9.3, and 12 rare novel variants identified in 4773 Japanese individuals. These CYP2C9 variants were heterologously expressed in 293FT cells, and the kinetic parameters (Km, kcat, Vmax, catalytic efficiency, and CLint) of (S)-warfarin 7-hydroxylation and tolbutamide 4-hydroxylation were estimated. From this analysis, almost all novel CYP2C9 variants showed significantly reduced or null enzymatic activity compared with that of the CYP2C9 wild-type. A strong correlation was found in catalytic efficiencies between (S)-warfarin 7-hydroxylation and tolbutamide 4-hydroxylation among all studied CYP2C9 variants. The causes of the observed perturbation in enzyme activity were evaluated by three-dimensional structural modeling. Our findings could clarify a part of discrepancies among genotype-phenotype associations based on the novel CYP2C9 rare allelic variants and could, therefore, improve personalized medicine, including the selection of the appropriate warfarin dose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA