Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 150: 109597, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697373

RESUMO

This study investigated the effects of fish protein hydrolysate derived from barramundi on growth performance, muscle composition, immune response, disease resistance, histology and gene expression in white shrimp (Penaeus vannamei). In vitro studies demonstrated FPH enhanced mRNA expressions of key immune-related genes and stimulated reactive oxygen species (ROS) production and phagocytic activity in shrimp hemocytes. To evaluate the effects of substituting fish meal with FPH in vivo, four isoproteic (43 %), isolipidic (6 %), and isoenergetic diets (489 kcal/100 g) were formulated with fish meal substitution levels of 0 % (control), 30 % (FPH30), 65 % (FPH65), and 100 % (FPH100). After 8-week feeding, the growth performance of FPH65 and FPH100 were significantly lower than that of control and FPH30 (p < 0.05). Similarly, the midgut histological examination revealed the wall thickness and villi height of FPH100 were significantly lower than those of control (p < 0.05). The shrimps were received the challenge of AHPND + Vibrio parahaemolyticus at week 4 and 8. All FPH-fed groups significantly enhanced resistance against Vibrio parahaemolyticus at week 4 (p < 0.05). However, this protective effect diminished after long-period feeding. No significant difference of survival rate was observed among all groups at week 8 (p > 0.05). The expressions of immune-related genes were analyzed at week 4 before and after challenge. In control group, V. parahaemolyticus significantly elevated SOD in hepatopancreas and Muc 19, trypsin, Midline-fas, and GPx in foregut (p < 0.05). Moreover, hepatopancreatic SOD of FPH65 and FPH100 were significantly higher than that of control before challenge (p < 0.05). Immune parameters were measured at week 8. Compared with control, the phagocytic index of FPH 30 was significantly higher (p < 0.05). However, dietary FPH did not alter ROS production, phenoloxidase activity, phagocytic rate, and total hemocyte count (p > 0.05). These findings suggest that FPH30 holds promise as a feed without adverse impacts on growth performance while enhancing the immunological response of white shrimp.


Assuntos
Ração Animal , Dieta , Imunidade Inata , Penaeidae , Hidrolisados de Proteína , Vibrio parahaemolyticus , Animais , Penaeidae/imunologia , Penaeidae/crescimento & desenvolvimento , Vibrio parahaemolyticus/fisiologia , Ração Animal/análise , Dieta/veterinária , Hidrolisados de Proteína/química , Hidrolisados de Proteína/administração & dosagem , Resistência à Doença , Suplementos Nutricionais/análise , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia
2.
Fish Shellfish Immunol ; 142: 109134, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37802263

RESUMO

In this study, the immunomodulatory and antioxidant activity of fermented Caulerpa microphysa byproduct (FCMB) by Bacillus subtilis was evaluated, and its potential as a feed additive for white shrimp (Litopenaeus vannamei) was explored. In vitro experiments showed that the FCMB supernatant contained polysaccharides, polyphenols and flavonoids, and exhibited antioxidant properties as assessed by various antioxidant assays. Additionally, the FCMB supernatant was found to increase the production rate of reactive oxygen species and the activity of phenoloxidase in hemocytes in vitro. Furthermore, the results of the in vivo feeding trial showed that dietary 5 g kg-1 FCMB significantly improved the weight gain and specific growth rate of white shrimp after 56 days of feeding. Although there were no significant differences in total hemocyte count, phagocytosis, superoxide anion production rate, and phenoloxidase activity among the experimental groups, upregulation of immune-related genes was observed, particularly in the hepatopancreas and hemocytes of shrimps fed with 5 g or 50 g FCMB per kg feed, respectively. In the pathogen challenge assay, white shrimp fed with 5 % FCMB exhibited a higher survival rate compared to the control group following Vibrio parahaemolyticus challenge. Therefore, it is concluded that the fermented byproduct of C. microphysa, FCMB, holds potential as a feed additive for enhancing the growth performance and disease resistance against V. parahaemolyticus in white shrimp.


Assuntos
Caulerpa , Penaeidae , Vibrio parahaemolyticus , Animais , Bacillus subtilis , Resistência à Doença , Antioxidantes , Monofenol Mono-Oxigenase , Dieta/veterinária , Imunidade Inata
3.
Sensors (Basel) ; 22(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684699

RESUMO

The ocean resources have been rapidly depleted in the recent decade, and the complementary role of aquaculture to food security has become more critical than ever before. Water quality is one of the key factors in determining the success of aquaculture and real-time water quality monitoring is an important process for aquaculture. This paper proposes a low-cost and easy-to-build artificial intelligence (AI) buoy system that autonomously measures the related water quality data and instantly forwards them via wireless channels to the shore server. Furthermore, the data provide aquaculture staff with real-time water quality information and also assists server-side AI programs in implementing machine learning techniques to further provide short-term water quality predictions. In particular, we aim to provide a low-cost design by combining simple electronic devices and server-side AI programs for the proposed buoy system to measure water velocity. As a result, the cost for the practical implementation is approximately USD 2015 only to facilitate the proposed AI buoy system to measure the real-time data of dissolved oxygen, salinity, water temperature, and velocity. In addition, the AI buoy system also offers short-term estimations of water temperature and velocity, with mean square errors of 0.021 °C and 0.92 cm/s, respectively. Furthermore, we replaced the use of expensive current meters with a flow sensor tube of only USD 100 to measure water velocity.


Assuntos
Inteligência Artificial , Qualidade da Água , Aquicultura , Monitoramento Ambiental/métodos , Humanos , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA