RESUMO
Background: School-based targeted preventive chemotherapy (PC), the main strategy for soil-transmitted helminths (STH) control, excludes other at-risk populations including adults and preschool children. Mass drug administration (MDA), covering all age groups, would bring additional health benefits but also requires greater investment. This cost survey and cost-effectiveness analysis compared MDA with school-based targeted PC for STH control in Dak Lak, Vietnam, where STH are endemic. Methods: A cost survey was conducted in 2020 to estimate the total and per person economic and financial cost of each strategy. Monte Carlo simulation accounted for uncertainty in cost estimates. The primary effectiveness measure was hookworm-related disability-adjusted life years (DALYs) averted, and secondary measures were hookworm infection-years averted and moderate-to-heavy intensity hookworm infection-years averted. A Markov model was used to determine the incremental cost-effectiveness ratio (ICER) of MDA compared to school-based targeted PC using a government payer perspective and a ten-year time horizon. One-way and probabilistic sensitivity analyses (PSA) were performed. Costs are reported in 2020 USD ($). Findings: The economic cost per person was $0.27 for MDA and $0.43 for school-based targeted PC. MDA in Dak Lak will cost $472,000 per year, while school-based targeted PC will cost $117,000. Over 10 years, MDA is estimated to avert an additional 121,465 DALYs; 4,019,262 hookworm infection-years, and 765,844 moderate-to-heavy intensity hookworm infection-years compared to school-based targeted PC. The ICER was $28.55 per DALY averted; $0.87 per hookworm infection-years averted, and $4.54 per moderate-to-heavy intensity hookworm infection-years averted. MDA was cost-effective in all PSA iterations. Interpretation: In areas where hookworm predominates and adults suffer a significant burden of infection, MDA is cost effective compared to school based targeted PC and is the best strategy to achieve global targets. Funding: The project was funded by the National Health and Medical Research Council (NHMRC) of Australia (Project Grant APP1139561) and JPCDT was supported by a UNSW Scientia PhD Scholarship.
RESUMO
BACKGROUND: Current guidelines and targets for soil-transmitted helminth (STH) control focus on school-based deworming for school-age children, given the high risk of associated morbidity in this age group. However, expanding deworming to all age groups may achieve improved STH control among both the community in general and school-age children, by reducing their risk of reinfection. This trial aims to compare school-based targeted deworming with community-wide mass deworming in terms of impact on STH infections among school-age children. METHODS: The CoDe-STH (Community Deworming against STH) trial is a cluster-randomised controlled trial (RCT) in 64 primary schools in Dak Lak province, Vietnam. The control arm will receive one round of school-based targeted deworming with albendazole, while in the intervention arm, community-wide mass deworming with albendazole will be implemented alongside school-based deworming. Prevalence of STH infections will be measured in school-age children at baseline and 12 months following deworming. The primary outcome is hookworm prevalence in school-age children at 12 months, by quantitative PCR. Analysis will be intention-to-treat, with outcomes compared between study arms using generalised linear and non-linear mixed models. Additionally, cost-effectiveness of mass and targeted deworming will be calculated and compared, and focus group discussions and interviews will be used to assess acceptability and feasibility of deworming approaches. Individual based stochastic models will be used to predict the impact of mass and targeted deworming strategies beyond the RCT timeframe to assess the likelihood of parasite population 'bounce-back' if deworming is ceased due to low STH prevalence. DISCUSSION: The first large-scale trial comparing mass and targeted deworming for STH control in South East Asia will provide key information for policy makers regarding the optimal design of STH control programs. TRIAL REGISTRATION: ACTRN12619000309189 .
Assuntos
Antiprotozoários/uso terapêutico , Helmintíase/tratamento farmacológico , Helmintos/isolamento & purificação , Solo/parasitologia , Albendazol/uso terapêutico , Ancylostomatoidea/isolamento & purificação , Animais , Criança , Análise Custo-Benefício , Feminino , Helmintíase/economia , Helmintíase/epidemiologia , Humanos , Masculino , Prevalência , Vietnã/epidemiologiaRESUMO
BACKGROUND: Globally, bacterial vector-borne disease (VBD) exerts a large toll on dogs in terms of morbidity and mortality but nowhere is this more pronounced than in the tropics. Tropical environments permit a burgeoning diversity and abundance of ectoparasites some of which can transmit an extensive range of infectious agents, including bacteria, amongst others. Although some of these vector-borne bacteria are responsible for both animal and human diseases in the tropics, there is a scarcity of epidemiological investigation into these pathogens' prevalence. The situation is further exacerbated by frequent canine co-infection, complicating symptomatology that regular diagnostic techniques may miss or be unable to fully characterise. Such limitations draw attention to the need to develop screening tools capable of detecting a wide range of pathogens from a host simultaneously. RESULTS: Here, we detail the employment of a next-generation sequencing (NGS) metabarcoding methodology to screen for the spectrum of bacterial VBD that are infecting semi-domesticated dogs across temple communities in Bangkok, Thailand. Our NGS detection protocol was able to find high levels of Ehrlichia canis, Mycoplasma haemocanis and Anaplasma platys infection rates as well as less common pathogens, such as "Candidatus Mycoplasma haematoparvum", Mycoplasma turicensis and Bartonella spp. We also compared our high-throughput approach to conventional endpoint PCR methods, demonstrating an improved detection ability for some bacterial infections, such as A. platys but a reduced ability to detect Rickettsia. CONCLUSIONS: Our methodology demonstrated great strength at detecting coinfections of vector-borne bacteria and rare pathogens that are seldom screened for in canines in the tropics, highlighting its advantages over traditional diagnostics to better characterise bacterial pathogens in environments where there is a dearth of research.