Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Adv Nutr ; 15(4): 100198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432591

RESUMO

Understanding energy expenditure in children with chronic disease is critical due to the impact on energy homeostasis and growth. This systematic review aimed to describe available literature of resting (REE) and total energy expenditure (TEE) in children with chronic disease measured by gold-standard methods of indirect calorimetry (IC) and doubly labeled water (DLW), respectively. A literature search was conducted using OVID Medline, Embase, CINAHL Plus, Cochrane, and Scopus until July 2023. Studies were included if the mean age of the participants was ≤18 y, participants had a chronic disease, and measurement of REE or TEE was conducted using IC or DLW, respectively. Studies investigating energy expenditure in premature infants, patients with acute illness, and intensive care patients were excluded. The primary outcomes were the type of data (REE, TEE) obtained and REE/TEE stratified by disease group. In total, 271 studies across 24 chronic conditions were identified. Over 60% of retrieved studies were published >10 y ago and conducted on relatively small population sizes (n range = 1-398). Most studies obtained REE samples (82%) rather than that of TEE (8%), with very few exploring both samples (10%). There was variability in the difference in energy expenditure in children with chronic disease compared with that of healthy control group across and within disease groups. Eighteen predictive energy equations were generated across the included studies. Quality assessment of the studies identified poor reporting of energy expenditure protocols, which may limit the validity of results. Current literature on energy expenditure in children with chronic disease, although extensive, reveals key future research opportunities. International collaboration and robust measurement of energy expenditure should be conducted to generate meaningful predictive energy equations to provide updated evidence that is reflective of emerging disease-modifying therapies. This study was registered in PROSPERO as CRD42020204690.


Assuntos
Calorimetria Indireta , Metabolismo Energético , Humanos , Metabolismo Energético/fisiologia , Criança , Doença Crônica , Calorimetria Indireta/métodos , Adolescente , Masculino , Feminino , Pré-Escolar , Lactente
2.
Am J Clin Nutr ; 119(5): 1111-1121, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503654

RESUMO

BACKGROUND: Predicting energy requirements for older adults is compromised by the underpinning data being extrapolated from younger adults. OBJECTIVES: To generate and validate new total energy expenditure (TEE) predictive equations specifically for older adults using readily available measures (age, weight, height) and to generate and test new physical activity level (PAL) values derived from 1) reference method of indirect calorimetry and 2) predictive equations in adults aged ≥65 y. METHODS: TEE derived from "gold standard" methods from n = 1657 (n = 1019 females, age range 65-90 y), was used to generate PAL values. PAL ranged 1.28-2.05 for males and 1.26-2.06 for females. Physical activity (PA) coefficients were also estimated and categorized (inactive to very active) from population means. Nonlinear regression was used to develop prediction equations for estimating TEE. Double cross-validation in a randomized, sex-stratified, age-matched 50:50 split, and leave one out cross-validation were performed. Comparisons were made with existing equations. RESULTS: Equations predicting TEE using the Institute of Medicine method are as follows: For males, TEE = -5680.17 - 17.50 × age (years) + PA coefficient × (6.96 × weight [kilograms] + 44.21 × height [centimeters]) + 1.13 × resting metabolic rate (RMR) (kilojoule/day). For females, TEE = -5290.72 - 8.38 × age (years) + PA coefficient × (9.77 × weight [kilograms] + 41.51 × height [centimeters]) + 1.05 × RMR (kilojoule/day), where PA coefficient values range from 1 (inactive) to 1.51 (highly active) in males and 1 to 1.44 in females respectively. Predictive performance for TEE from anthropometric variables and population mean PA was moderate with limits of agreement approximately ±30%. This improved to ±20% if PA was adjusted for activity category (inactive, low active, active, and very active). Where RMR was included as a predictor variable, the performance improved further to ±10% with a median absolute prediction error of approximately 4%. CONCLUSIONS: These new TEE prediction equations require only simple anthropometric data and are accurate and reproducible at a group level while performing better than existing equations. Substantial individual variability in PAL in older adults is the major source of variation when applied at an individual level.


Assuntos
Calorimetria Indireta , Metabolismo Energético , Humanos , Idoso , Feminino , Masculino , Metabolismo Energético/fisiologia , Idoso de 80 Anos ou mais , Exercício Físico/fisiologia , Reprodutibilidade dos Testes , Peso Corporal , Atividade Motora , Fatores Etários , Metabolismo Basal , Necessidades Nutricionais
3.
Adv Nutr ; 14(6): 1307-1325, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37562709

RESUMO

Malnutrition is prevalent in people with upper gastrointestinal (GI) cancers and is associated with shorter survival and poor quality of life. In order to effectively prevent or treat malnutrition, nutrition interventions must ensure appropriate energy provision to meet daily metabolic demands. In practice, the energy needs of people with cancer are frequently estimated from predictive equations which are not cancer-specific and are demonstrated to be inaccurate in this population. The purpose of this scoping review was to synthesize the existing evidence regarding energy expenditure in people with upper GI cancer. Three databases (Ovid MEDLINE, Embase via Ovid, CINAHL plus) were systematically searched to identify studies reporting on resting energy expenditure using indirect calorimetry and total energy expenditure using doubly labeled water (DLW) in adults with any stage of upper GI cancer at any point from diagnosis. A total of 57 original research studies involving 2,125 individuals with cancer of the esophagus, stomach, pancreas, biliary tract, or liver were eligible for inclusion. All studies used indirect calorimetry, and one study used DLW to measure energy expenditure, which was reported unadjusted in 42 studies, adjusted for body weight in 32 studies, and adjusted for fat-free mass in 13 studies. Energy expenditure in upper GI cancer was compared with noncancer controls in 19 studies and measured compared with predicted energy expenditure reported in 31 studies. There was heterogeneity in study design and in reporting of important clinical characteristics between studies. There was also substantial variation in energy expenditure between studies and within and between cancer types. Given this heterogeneity and known inaccuracies of predictive equations in patients with cancer, energy expenditure should be measured in practice wherever feasible. Additional research in cohorts defined by cancer type, stage, and treatment is needed to further characterize energy expenditure in upper GI cancer.


Assuntos
Neoplasias Gastrointestinais , Desnutrição , Adulto , Humanos , Qualidade de Vida , Metabolismo Energético , Peso Corporal , Água/química
4.
Ann Nutr Metab ; 79(2): 263-273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36592624

RESUMO

INTRODUCTION: The life expectancy of older adults continues to increase; however, knowledge regarding their total energy requirements is lacking. This study aimed to compare the total energy expenditure (TEE) of older adults ≥80 years measured using doubly labelled water (DLW), with estimated TEE. The hypothesis was that the Mifflin, Ikeda, and Livingston equations will more closely estimate energy requirements than the commonly used Schofield equation. METHODS: Resting metabolic rate (RMR) and TEE were measured using the reference methods of indirect calorimetry and DLW, respectively. Bland-Altman plots compared measured RMR and TEE with predicted RMR using equations (Mifflin, Ikeda, Livingston, Schofield) and predicted TEE (predicted RMR × physical activity level). RESULTS: Twenty-one older adults (age range 80.7-90.1 years, BMI 26.1 ± 5.5 kg/m2) were included. The Schofield equation demonstrated the greatest bias from measured RMR, overestimating approximately up to double the mean difference (865 ± 662 kJ/day) compared with the three other equations. The Schofield equation exhibited the greatest bias (overestimation of 641 ± 1,066 kJ/day) compared with measured TEE. The other three equations underestimated TEE, with the least bias from Ikeda (37 ± 1,103 kJ/day), followed by Livingston (251 ± 1,108 kJ/day), and Mifflin (354 ± 1,140 kJ/day). Data are mean ± SD. CONCLUSIONS: In older adults ≥80 years, the Ikeda, Mifflin, and Livingston equations provide closer estimates of TEE than the widely used Schofield equation. The development of nutrition guidelines therefore should consider the utilization of equations which more accurately reflect age-specific requirements.


Assuntos
Metabolismo Energético , Água , Humanos , Idoso , Idoso de 80 Anos ou mais , Metabolismo Basal , Calorimetria Indireta , Nível de Saúde
5.
Clin Nutr ; 41(2): 424-432, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35007811

RESUMO

BACKGROUND & AIMS: Doubly labelled water (DLW) is considered the reference standard method of measuring total energy expenditure (TEE), but there is limited information on its use in the Intensive Care Unit (ICU) and acute care setting. This scoping review aims to systematically summarize the available literature on TEE measured using DLW in these contexts. METHODS: Four online databases (MEDLINE, Embase, Emcare and CINAHL) were searched up to Dec 12, 2020. Studies in English were included if they measured TEE using DLW in adults in the ICU and/or acute care setting. Key considerations, concerns and practical recommendations were identified and qualitatively synthesized. RESULTS: The search retrieved 7582 studies and nine studies were included; one in the ICU and eight in the acute care setting. TEE was measured over 7-15-days, in predominantly clinically stable patients. DLW measurements were not commenced until four days post admission or surgery in one study and following a 10-14-day stabilization period on parenteral nutrition (PN) in three studies. Variable dosages of isotopes were administered, and several equations used to calculate TEE. Four main considerations were identified with the use of DLW in these settings: variation in background isotopic abundance; excess isotopes leaving body water as carbon dioxide or water; fluctuations in rates of isotope elimination and costs. CONCLUSION: A stabilization period on intravenous fluid and PN regimens is recommended prior to DLW measurement. The DLW technique can be utilized in medically stable ICU and acute care patients, with careful considerations given to protocol design.


Assuntos
Água Corporal/metabolismo , Calorimetria Indireta/métodos , Metabolismo Energético , Avaliação Nutricional , Coloração e Rotulagem/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estado Terminal , Feminino , Hidratação , Humanos , Pacientes Internados , Unidades de Terapia Intensiva , Isótopos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Nutrição Parenteral
6.
Am J Clin Nutr ; 110(6): 1353-1361, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504100

RESUMO

BACKGROUND: Contemporary energy expenditure data are crucial to inform and guide nutrition policy in older adults to optimize nutrition and health. OBJECTIVE: The aim was to determine the optimal method of estimating total energy expenditure (TEE) in adults (aged ≥65 y) through 1) establishing which published predictive equations have the closest agreement between measured resting metabolic rate (RMR) and predicted RMR and 2) utilizing the RMR equations with the best agreement to predict TEE against the reference method of doubly labeled water (DLW). METHODS: A database consisting of international participant-level TEE data from DLW studies was developed to enable comparison with energy requirements estimated by 17 commonly used predictive equations. This database included 31 studies comprising 988 participant-level RMR data and 1488 participant-level TEE data. Mean physical activity level (PAL) was determined for men (PAL = 1.69, n = 320) and women (PAL = 1.66, n = 668). Bland-Altman plots assessed agreement of measured RMR and TEE with predicted RMR and TEE in adults aged ≥65 y, and subgroups of 65-79 y and ≥80 y. Linear regression assessed proportional bias. RESULTS: The Ikeda, Livingston, and Mifflin equations most closely agreed with measured RMR and TEE in all adults aged ≥65 y and in the 65-79 y and ≥80 y subgroups. In adults aged ≥65 y, the Ikeda and Livingston equations overestimated TEE by a mean ± SD of 175 ± 1362 kJ/d and 86 ± 1344 kJ/d, respectively. The Mifflin equation underestimated TEE by a mean ± SD of 24 ± 1401 kJ/d. Proportional bias was present as energy expenditure increased. CONCLUSIONS: The Ikeda, Livingston, or Mifflin equations are recommended for estimating energy requirements of older adults. Future research should focus on developing predictive equations to meet the requirements of the older population with consideration given to body composition and functional measures.


Assuntos
Envelhecimento/metabolismo , Metabolismo Energético , Água/metabolismo , Idoso , Idoso de 80 Anos ou mais , Metabolismo Basal , Composição Corporal , Exercício Físico , Feminino , Humanos , Masculino , Água/química
7.
Nutr J ; 17(1): 40, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29580255

RESUMO

BACKGROUND: Increasing population lifespan necessitates a greater understanding of nutritional needs in older adults (65 year and over). A synthesis of total energy expenditure in the older population has not been undertaken and is needed to inform nutritional requirements. We aimed to establish the extent of the international evidence for total energy expenditure (TEE) using doubly-labelled water (DLW) in older adults (65 years and over), report challenges in obtaining primary data, and make recommendations for future data sharing. METHODS: Four databases were searched to identify eligible studies; original research of any study design where participant level TEE was measured using DLW in participants aged ≥65 years. Once studies were identified for inclusion, authors were contacted where data were not publicly available. RESULTS: Screening was undertaken of 1223 records; the review of 317 full text papers excluded 170 records. Corresponding or first authors of 147 eligible studies were contacted electronically. Participant level data were publicly available or provided by authors for 45 publications (890 participants aged ≥65 years, with 248 aged ≥80 years). Sixty-seven percent of the DLW data in this population were unavailable due to authors unable to be contacted or declining to participate, or data being irretrievable. CONCLUSIONS: The lack of data access limits the value of the original research and its contribution to nutrition science. Openly accessible DLW data available through publications or a new international data repository would facilitate greater integration of current research with previous findings and ensure evidence is available to support the needs of the ageing population. TRIAL REGISTRATION: The protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO), registration number CRD42016047549 .


Assuntos
Óxido de Deutério , Metabolismo Energético/fisiologia , Necessidades Nutricionais/fisiologia , Isótopos de Oxigênio , Idoso , Idoso de 80 Anos ou mais , Humanos , Marcação por Isótopo , Sensibilidade e Especificidade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA