RESUMO
BACKGROUND: Time from stroke onset to hospital arrival determines treatment and impacts outcome. Structural, socioeconomic, and environmental factors are associated with health inequity and onset-to-arrival in adult stroke. We aimed to assess the association between health inequity and onset-to-arrival in a pediatric comprehensive stroke center. METHODS: A retrospective observational study was conducted on a consecutive cohort of children (>28 days-18 years) diagnosed with acute arterial ischemic stroke (AIS) between 2004 and 2019. Neighborhood-level material deprivation was derived from residential postal codes and used as a proxy measure for health inequity. Patients were stratified by level of neighborhood-level material deprivation, and onset-to-arrival was categorized into 3 groups: <6, 6 to 24, and >24 hours. Association between neighborhood-level material deprivation and onset-to-arrival was assessed in multivariable ordinal logistic regression analyses adjusting for sociodemographic and clinical factors. RESULTS: Two hundred and twenty-nine children were included (61% male; median age [interquartile range] at stroke diagnosis 5.8-years [1.1-11.3]). Over the 16-year study period, there was an increase in proportion of children diagnosed with AIS living in the most deprived neighborhoods and arriving at the emergency room within 6 hours (P=0.01). Among Asian patients, a higher proportion lived in the most deprived neighborhoods (P=0.02) and level of material deprivation was associated with AIS risk factors (P=0.001). CONCLUSIONS: Our study suggests an increase in pediatric stroke in deprived neighborhoods and certain communities, and earlier arrival times to the emergency room over time. However, whether these changes are due to an increase in incidence of childhood AIS or increased awareness and diagnosis is yet to be determined. The association between AIS risk factors and material deprivation highlights the intersectionality of clinical factors and social determinants of health. Finally, whether material deprivation impacts onset-to-arrival is likely complex and requires further examination.
RESUMO
A morbidostat is a bioreactor that uses antibiotics to control the growth of bacteria, making it well-suited for studying the evolution of antibiotic resistance. However, morbidostats are often too expensive to be used in educational settings. Here we present a low-cost morbidostat called the EVolutionary biorEactor (EVE) that can be built by students with minimal engineering and programming experience. We describe how we validated EVE in a real classroom setting by evolving replicate Escherichia coli populations under chloramphenicol challenge, thereby enabling students to learn about bacterial growth and antibiotic resistance.