Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 14(1): 1141-1154, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223070

RESUMO

Background: Although imaging techniques provide information about the morphology and stability of carotid plaque, they are operator dependent and may miss certain subtleties. A variety of radiomics models for carotid plaque have recently been proposed for identifying vulnerable plaques and predicting cardiovascular and cerebrovascular diseases. The purpose of this review was to assess the risk of bias, reporting, and methodological quality of radiomics models for carotid atherosclerosis plaques. Methods: A systematic search was carried out to identify available literature published in PubMed, Web of Science, and the Cochrane Library up to March 2023. Studies that developed and/or validated machine learning models based on radiomics data to identify and/or predict unfavorable cerebral and cardiovascular events in carotid plaque were included. The basic information of each piece of included literature was identified, and the reporting quality, risk of bias, and radiomics methodology quality were assessed according the TRIPOD (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis) checklist, the Prediction Model Risk of Bias Assessment Tool (PROBAST), and the radiomics quality score (RQS), respectively. Results: A total of 2,738 patients from 19 studies were included. The mean overall TRIPOD adherence rate was 66.1% (standard deviation 12.8%), with a range of 45-87%. All studies had a high overall risk of bias, with the analysis domain being the most common source of bias. The mean RQS was 9.89 (standard deviation 5.70), accounting for 27.4% of the possible maximum value of 36. The mean area under the curve for diagnostic or predictive properties of these included radiomics models was 0.876±0.09, with a range of 0.741-0.989. Conclusions: Radiomics models may have value in the assessment of carotid plaque, the overall scientific validity and reporting quality of current carotid plaque radiomics reports are still lacking, and many barriers must be overcome before these models can be applied in clinical practice.

2.
J Clin Ultrasound ; 52(2): 112-123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37930047

RESUMO

PURPOSE: This study aims to explore the diagnostic efficiency of the Demetics for breast lesions and assessment of Ki-67 status. MATERIAL: This retrospective study included 291 patients. Three combined methods (method 1: upgraded BI-RADS when Demetics classified the breast lesion as malignant; method 2: downgraded BI-RADS when Demetics classified the breast lesion as benign; method 3: BI-RADS was upgraded or downgraded according to Demetrics' diagnosis) were used to compare the diagnostic efficiency of two radiologists with different seniority before and after using Demetics. The correlation between the visual heatmap by Demetics and the Ki-67 expression level of breast cancer was explored. RESULTS: The sensitivity, specificity, and area under curve (AUC) of diagnosis by Demetics, junior radiologist and senior radiologist were 89.5%, 83.1%, 0.863; 76.9%, 82.4%, 0.797 and 81.1%, 89.9%, 0.855, respectively. Method 1 was the best for senior radiologist, which increased AUC from 0.855 to 0.884. For junior radiologist, Method 3 was the best method, improving sensitivity (88.8% vs. 76.9%) and specificity (87.2% vs. 82.4%). Demetics paid more attention to the peripheral area of breast cancer with high expression of Ki-67. CONCLUSION: Demetics has shown good diagnostic efficiency in the assisted diagnosis of breast lesions and is expected to further distinguish Ki-67 status of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Mama/patologia , Antígeno Ki-67 , Estudos Retrospectivos , Sensibilidade e Especificidade
3.
Ultrasound Med Biol ; 49(12): 2437-2445, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37718124

RESUMO

Imaging modalities provide information on plaque morphology and vulnerability; however, they are operator dependent and miss a great deal of microscopic information. Recently, many radiomics models for carotid plaque that identify unstable plaques and predict cardiovascular outcomes have been proposed. This systematic review was aimed at assessing whether radiomics is a reliable and reproducible method for the clinical prediction of carotid plaque. A systematic search was conducted to identify studies published in PubMed and Cochrane library from January 1, 2001, to September 30, 2022. Both retrospective and prospective studies that developed and/or validated machine learning models based on radiomics data to classify or predict carotid plaques were included. The general characteristics of each included study were selected, and the methodological quality of radiomics reports and risk of bias were evaluated using the radiomics quality score (RQS) tool and Quality Assessment of Diagnostic Accuracy Studies-2, respectively. Two investigators independently reviewed each study, and the consensus data were used for analysis. A total of 2429 patients from 16 studies were included. The mean area under the curve of radiomics models for diagnostic or predictive performance of the included studies was 0.88 ± 0.02, with a range of 0.741-0.989. The mean RQS was 9.25 (standard deviation: 6.04), representing 25.7% of the possible maximum value of 36, whereas the lowest point was -2, and the highest score was 22. Radiomics models have revealed additional information on patients with carotid plaque, but with respect to methodological quality, radiomics reports are still in their infancy, and many hurdles need to be overcome.


Assuntos
Aprendizado de Máquina , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Consenso
4.
Cancers (Basel) ; 15(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36765796

RESUMO

This study aimed to explore the feasibility of using a deep-learning (DL) approach to predict TIL levels in breast cancer (BC) from ultrasound (US) images. A total of 494 breast cancer patients with pathologically confirmed invasive BC from two hospitals were retrospectively enrolled. Of these, 396 patients from hospital 1 were divided into the training cohort (n = 298) and internal validation (IV) cohort (n = 98). Patients from hospital 2 (n = 98) were in the external validation (EV) cohort. TIL levels were confirmed by pathological results. Five different DL models were trained for predicting TIL levels in BC using US images from the training cohort and validated on the IV and EV cohorts. The overall best-performing DL model, the attention-based DenseNet121, achieved an AUC of 0.873, an accuracy of 79.5%, a sensitivity of 90.7%, a specificity of 65.9%, and an F1 score of 0.830 in the EV cohort. In addition, the stratified analysis showed that the DL models had good discrimination performance of TIL levels in each of the molecular subgroups. The DL models based on US images of BC patients hold promise for non-invasively predicting TIL levels and helping with individualized treatment decision-making.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA