Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 59(5): 1494-1513, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37675919

RESUMO

Owing to the increasing prevalence of diabetic mellitus, diabetic kidney disease (DKD) is presently the leading cause of chronic kidney disease and end-stage renal disease worldwide. Early identification and disease interception is of paramount clinical importance for DKD management. However, current diagnostic, disease monitoring and prognostic tools are not satisfactory, due to their low sensitivity, low specificity, or invasiveness. Magnetic resonance imaging (MRI) is noninvasive and offers a host of contrast mechanisms that are sensitive to pathophysiological changes and risk factors associated with DKD. MRI tissue characterization involves structural and functional information including renal morphology (kidney volume (TKV) and parenchyma thickness using T1- or T2-weighted MRI), renal microstructure (diffusion weighted imaging, DWI), renal tissue oxygenation (blood oxygenation level dependent MRI, BOLD), renal hemodynamics (arterial spin labeling and phase contrast MRI), fibrosis (DWI) and abdominal or perirenal fat fraction (Dixon MRI). Recent (pre)clinical studies demonstrated the feasibility and potential value of DKD evaluation with MRI. Recognizing this opportunity, this review outlines key concepts and current trends in renal MRI technology for furthering our understanding of the mechanisms underlying DKD and for supplementing clinical decision-making in DKD. Progress in preclinical MRI of DKD is surveyed, and challenges for clinical translation of renal MRI are discussed. Future directions of DKD assessment and renal tissue characterization with (multi)parametric MRI are explored. Opportunities for discovery and clinical break-through are discussed including biological validation of the MRI findings, large-scale population studies, standardization of DKD protocols, the synergistic connection with data science to advance comprehensive texture analysis, and the development of smart and automatic data analysis and data visualization tools to further the concepts of virtual biopsy and personalized DKD precision medicine. We hope that this review will convey this vision and inspire the reader to become pioneers in noninvasive assessment and management of DKD with MRI. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Insuficiência Renal Crônica , Humanos , Nefropatias Diabéticas/diagnóstico por imagem , Rim/patologia , Imageamento por Ressonância Magnética/métodos , Testes de Função Renal/métodos , Insuficiência Renal Crônica/patologia
2.
Quant Imaging Med Surg ; 13(12): 8336-8349, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38106319

RESUMO

Background: Rhabdomyolysis (RM)-induced acute kidney injury (AKI) is a common renal disease with low survival rate and inadequate prognosis. In this study, we investigate the feasibility of chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) for assessing the progression of RM-induced AKI in a mouse model. Methods: AKI was induced in C57BL/6J mice via intramuscular injection of 7.5 mL/kg glycerol (n=30). Subsequently, serum creatinine (SCr), blood urea nitrogen (BUN), and hematoxylin-eosin (HE) and Masson staining, were performed. Longitudinal CEST-MRI was conducted on days 1, 3, 7, 15, and 30 after AKI induction using a 7.0-T MRI system. CEST-MRI quantification parameters including magnetization transfer ratio (MTR), MTR asymmetric analysis (MTRasym), apparent amide proton transfer (APT*), and apparent relayed nuclear Overhauser effect (rNOE*) were used to investigate the feasibility of detecting RM-induced renal damage. Results: Significant increases of SCr and BUN demonstrated established AKI. The HE staining revealed various degrees of tubular damage, and Masson staining indicted an increase in the degree of fibrosis in the injured kidneys. Among CEST parameters, the cortical MTR presented a significant difference, and it also showed the best diagnostic performance for AKI [area under the receiver operating characteristic curve (AUC) =0.915] and moderate negative correlations with SCr and BUN. On the first day of renal damage, MTR was significantly reduced in cortex (22.7%±0.04%, P=0.013), outer stripe of outer medulla (24.7%±1.6%, P<0.001), and inner stripe of outer medulla (27.0%±1.5%, P<0.001) compared to the control group. Longitudinally, MTR increased steadily with AKI progression. Conclusions: The MTR obtained from CEST-MRI is sensitive to the pathological changes in RM-induced AKI, indicating its potential clinical utility for the assessment of kidney diseases.

3.
Sci Rep ; 13(1): 22745, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123791

RESUMO

In magnetic resonance imaging (MRI), the perception of substandard image quality may prompt repetition of the respective image acquisition protocol. Subsequently selecting the preferred high-quality image data from a series of acquisitions can be challenging. An automated workflow may facilitate and improve this selection. We therefore aimed to investigate the applicability of an automated image quality assessment for the prediction of the subjectively preferred image acquisition. Our analysis included data from 11,347 participants with whole-body MRI examinations performed as part of the ongoing prospective multi-center German National Cohort (NAKO) study. Trained radiologic technologists repeated any of the twelve examination protocols due to induced setup errors and/or subjectively unsatisfactory image quality and chose a preferred acquisition from the resultant series. Up to 11 quantitative image quality parameters were automatically derived from all acquisitions. Regularized regression and standard estimates of diagnostic accuracy were calculated. Controlling for setup variations in 2342 series of two or more acquisitions, technologists preferred the repetition over the initial acquisition in 1116 of 1396 series in which the initial setup was retained (79.9%, range across protocols: 73-100%). Image quality parameters then commonly showed statistically significant differences between chosen and discarded acquisitions. In regularized regression across all protocols, 'structured noise maximum' was the strongest predictor for the technologists' choice, followed by 'N/2 ghosting average'. Combinations of the automatically derived parameters provided an area under the ROC curve between 0.51 and 0.74 for the prediction of the technologists' choice. It is concluded that automated image quality assessment can, despite considerable performance differences between protocols and anatomical regions, contribute substantially to identifying the subjective preference in a series of MRI acquisitions and thus provide effective decision support to readers.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Estudos de Coortes , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Curva ROC , Estudos Longitudinais
4.
NMR Biomed ; : e4992, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37401341

RESUMO

The global disparity of magnetic resonance imaging (MRI) is a major challenge, with many low- and middle-income countries (LMICs) experiencing limited access to MRI. The reasons for limited access are technological, economic and social. With the advancement of MRI technology, we explore why these challenges still prevail, highlighting the importance of MRI as the epidemiology of disease changes in LMICs. In this paper, we establish a framework to develop MRI with these challenges in mind and discuss the different aspects of MRI development, including maximising image quality using cost-effective components, integrating local technology and infrastructure and implementing sustainable practices. We also highlight the current solutions-including teleradiology, artificial intelligence and doctor and patient education strategies-and how these might be further improved to achieve greater access to MRI.

5.
Acta Physiol (Oxf) ; 237(2): e13868, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35993768

RESUMO

AIM: Tissue hypoxia is an early key feature of acute kidney injury. Assessment of renal oxygenation using magnetic resonance imaging (MRI) markers T2 and T2 * enables insights into renal pathophysiology. This assessment can be confounded by changes in the blood and tubular volume fractions, occurring upon pathological insults. These changes are mirrored by changes in kidney size (KS). Here, we used dynamic MRI to monitor KS for physiological interpretation of T2 * and T2 changes in acute pathophysiological scenarios. METHODS: KS was determined from T2 *, T2 mapping in rats. Six interventions that acutely alter renal tissue oxygenation were performed directly within the scanner, including interventions that change the blood and/or tubular volume. A biophysical model was used to estimate changes in O2 saturation of hemoglobin from changes in T2 * and KS. RESULTS: Upon aortic occlusion KS decreased; this correlated with a decrease in T2 *, T2 . Upon renal vein occlusion KS increased; this negatively correlated with a decrease in T2 *, T2 . Upon simultaneous occlusion of both vessels KS remained unchanged; there was no correlation with decreased T2 *, T2 . Hypoxemia induced mild reductions in KS and T2 *, T2 . Administration of an X-ray contrast medium induced sustained KS increase, with an initial increase in T2 *, T2 followed by a decrease. Furosemide caused T2 *, T2 elevation and a minor increase in KS. Model calculations yielded physiologically plausible calibration ratios for T2 *. CONCLUSION: Monitoring KS allows physiological interpretation of acute renal oxygenation changes obtained by T2 *, T2 . KS monitoring should accompany MRI-oximetry, for new insights into renal pathophysiology and swift translation into human studies.


Assuntos
Injúria Renal Aguda , Rim , Ratos , Humanos , Animais , Imageamento por Ressonância Magnética/métodos , Furosemida/farmacologia , Hipóxia , Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/patologia , Oxigênio
6.
Invest Radiol ; 57(7): 478-487, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35184102

RESUMO

BACKGROUND: Reproducible image quality is of high relevance for large cohort studies and can be challenging for magnetic resonance imaging (MRI). Automated image quality assessment may contribute to conducting radiologic studies effectively. PURPOSE: The aims of this study were to assess protocol repetition frequency in population-based whole-body MRI along with its effect on examination time and to examine the applicability of automated image quality assessment for predicting decision-making regarding repeated acquisitions. MATERIALS AND METHODS: All participants enrolled in the prospective, multicenter German National Cohort (NAKO) study who underwent whole-body MRI at 1 of 5 sites from 2014 to 2016 were included in this analysis (n = 11,347). A standardized examination program of 12 protocols was used. Acquisitions were carried out by certified radiologic technologists, who were authorized to repeat protocols based on their visual perception of image quality. Eleven image quality parameters were derived fully automatically from the acquired images, and their discrimination ability regarding baseline acquisitions and repetitions was tested. RESULTS: At least 1 protocol was repeated in 12% (n = 1359) of participants, and more than 1 protocol in 1.6% (n = 181). The repetition frequency differed across protocols (P < 0.001), imaging sites (P < 0.001), and over the study period (P < 0.001). The mean total scan time was 62.6 minutes in participants without and 67.4 minutes in participants with protocol repetitions (mean difference, 4.8 minutes; 95% confidence interval, 4.5-5.2 minutes). Ten of the automatically derived image quality parameters were individually retrospectively predictive for the repetition of particular protocols; for instance, "signal-to-noise ratio" alone provided an area under the curve of 0.65 (P < 0.001) for repetition of the Cardio Cine SSFP SAX protocol. Combinations generally improved prediction ability, as exemplified by "image sharpness" plus "foreground ratio" yielding an area under the curve of 0.89 (P < 0.001) for repetition of the Neuro T1w 3D MPRAGE protocol, versus 0.85 (P < 0.001) and 0.68 (P < 0.001) as individual parameters. CONCLUSIONS: Magnetic resonance imaging protocol repetitions were necessary in approximately 12% of scans even in the highly standardized setting of a large cohort study. Automated image quality assessment shows predictive value for the technologists' decision to perform protocol repetitions and has the potential to improve imaging efficiency.


Assuntos
Imageamento por Ressonância Magnética , Imagem Corporal Total , Estudos de Coortes , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Multicêntricos como Assunto , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos
7.
Methods Mol Biol ; 2216: 89-107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33475996

RESUMO

Renal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we describe basic principles of methodology to quantify renal hemodynamics and tissue oxygenation by means of invasive probes in experimental animals. Advantages and disadvantages of the various methods are discussed in the context of the heterogeneity of renal tissue perfusion and oxygenation.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by a separate chapter describing the experimental procedure and data analysis.


Assuntos
Biomarcadores/análise , Hemodinâmica , Rim/fisiologia , Monitorização Fisiológica/métodos , Oxigênio/análise , Circulação Renal , Animais , Eletrodos , Lasers , Consumo de Oxigênio , Perfusão , Software
8.
Methods Mol Biol ; 1718: 395-408, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29341021

RESUMO

The integrity of the blood-brain barrier (BBB) can be noninvasively monitored by magnetic resonance imaging (MRI). Conventional MR contrast agents (CAs) containing gadolinium are used in association with MRI in routine clinical practice to detect and quantify BBB leakage. Under normal circumstances CAs do not cross the intact BBB. However due to their small size they extravasate from the blood into the brain tissue even when the BBB is partially compromised. Here we describe an MR method based on T1-weighted images taken prior to and after CA injection. This MR method is useful for investigating BBB permeability in in vivo mouse models and can be easily applied in a number of experimental disease conditions including neuroinflammation disorders, or to assess (un)wanted drug effects.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Meios de Contraste/metabolismo , Gadolínio/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Permeabilidade Capilar , Camundongos
9.
Methods Mol Biol ; 1397: 129-154, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26676132

RESUMO

In vivo assessment of renal perfusion and oxygenation under (patho)physiological conditions by means of noninvasive diagnostic imaging is conceptually appealing. Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and quantitative parametric mapping of the magnetic resonance (MR) relaxation times T 2* and T 2 are thought to provide surrogates of renal tissue oxygenation. The validity and efficacy of this technique for quantitative characterization of local tissue oxygenation and its changes under different functional conditions have not been systematically examined yet and remain to be established. For this purpose, the development of an integrative multimodality approaches is essential. Here we describe an integrated hybrid approach (MR-PHYSIOL) that combines established quantitative physiological measurements with T 2* (T 2) mapping and MR-based kidney size measurements. Standardized reversible (patho)physiologically relevant interventions, such as brief periods of aortic occlusion, hypoxia, and hyperoxia, are used for detailing the relation between the MR-PHYSIOL parameters, in particular between renal T 2* and tissue oxygenation.


Assuntos
Hemodinâmica , Rim/irrigação sanguínea , Rim/metabolismo , Imageamento por Ressonância Magnética/métodos , Oxigênio/sangue , Circulação Renal , Animais , Hipóxia/metabolismo , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Rim/anatomia & histologia , Masculino , Modelos Animais , Consumo de Oxigênio , Ratos
10.
PLoS One ; 9(3): e91318, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24621588

RESUMO

INTRODUCTION: Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. METHODS: T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. RESULTS: Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. CONCLUSION: Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and brain tissue characterization.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/citologia , Encéfalo/patologia , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/patologia , Imagens de Fantasmas , Fatores de Tempo
11.
Eur Radiol ; 24(5): 1112-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24519109

RESUMO

OBJECTIVES: A combination of magnetic resonance images with real-time high-resolution ultrasound known as fusion imaging may improve ophthalmologic examination. This study was undertaken to evaluate the feasibility of orbital high-field magnetic resonance and real-time colour Doppler ultrasound image fusion and navigation. METHODS: This case study, performed between April and June 2013, included one healthy man (age, 47 years) and two patients (one woman, 57 years; one man, 67 years) with choroidal melanomas. All cases underwent 7.0-T magnetic resonance imaging using a custom-made ocular imaging surface coil. The Digital Imaging and Communications in Medicine volume data set was then loaded into the ultrasound system for manual registration of the live ultrasound image and fusion imaging examination. RESULTS: Data registration, matching and then volume navigation were feasible in all cases. Fusion imaging provided real-time imaging capabilities and high tissue contrast of choroidal tumour and optic nerve. It also allowed adding a real-time colour Doppler signal on magnetic resonance images for assessment of vasculature of tumour and retrobulbar structures. CONCLUSIONS: The combination of orbital high-field magnetic resonance and colour Doppler ultrasound image fusion and navigation is feasible. Multimodal fusion imaging promises to foster assessment and monitoring of choroidal melanoma and optic nerve disorders. KEY POINTS: • Orbital magnetic resonance and colour Doppler ultrasound real-time fusion imaging is feasible • Fusion imaging combines the spatial and temporal resolution advantages of each modality • Magnetic resonance and ultrasound fusion imaging improves assessment of choroidal melanoma vascularisation.


Assuntos
Neoplasias da Coroide/diagnóstico por imagem , Imageamento por Ressonância Magnética , Melanoma/diagnóstico por imagem , Órbita/diagnóstico por imagem , Neoplasias Uveais/diagnóstico por imagem , Idoso , Olho/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ultrassonografia
12.
J Cardiovasc Magn Reson ; 15: 23, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23497030

RESUMO

BACKGROUND: Functional and morphologic assessment of the right ventricle (RV) is of clinical importance. Cardiovascular magnetic resonance (CMR) at 1.5T has become gold standard for RV chamber quantification and assessment of even small wall motion abnormalities, but tissue analysis is still hampered by limited spatial resolution. CMR at 7T promises increased resolution, but is technically challenging. We examined the feasibility of cine imaging at 7T to assess the RV. METHODS: Nine healthy volunteers underwent CMR at 7T using a 16-element TX/RX coil and acoustic cardiac gating. 1.5T served as gold standard. At 1.5T, steady-state free-precession (SSFP) cine imaging with voxel size (1.2 x 1.2 x 6) mm3 was used; at 7T, fast gradient echo (FGRE) with voxel size (1.2 x 1.2 x 6) mm3 and (1.3 x 1.3 x 4) mm3 were applied. RV dimensions (RVEDV, RVESV), RV mass (RVM) and RV function (RVEF) were quantified in transverse slices. Overall image quality, image contrast and image homogeneity were assessed in transverse and sagittal views. RESULTS: All scans provided diagnostic image quality. Overall image quality and image contrast of transverse RV views were rated equally for SSFP at 1.5T and FGRE at 7T with voxel size (1.3 x 1.3 x 4)mm3. FGRE at 7T provided significantly lower image homogeneity compared to SSFP at 1.5T. RVEDV, RVESV, RVEF and RVM did not differ significantly and agreed close between SSFP at 1.5T and FGRE at 7T (p=0.5850; p=0.5462; p=0.2789; p=0.0743). FGRE at 7T with voxel size (1.3 x 1.3 x 4) mm3 tended to overestimate RV volumes compared to SSFP at 1.5T (mean difference of RVEDV 8.2 ± 9.3 ml) and to FGRE at 7T with voxel size (1.2 x 1.2 x 6) mm3 (mean difference of RVEDV 9.3 ± 8.6 ml). CONCLUSIONS: FGRE cine imaging of the RV at 7T was feasible and provided good image quality. RV dimensions and function were comparable to SSFP at 1.5T as gold standard.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca , Imagem Cinética por Ressonância Magnética , Volume Sistólico , Função Ventricular Direita , Adulto , Estudos de Viabilidade , Feminino , Humanos , Masculino , Fonocardiografia , Valor Preditivo dos Testes , Valores de Referência , Adulto Jovem
13.
Eur Radiol ; 20(6): 1344-55, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20013275

RESUMO

OBJECTIVE: As high-field cardiac MRI (CMR) becomes more widespread the propensity of ECG to interference from electromagnetic fields (EMF) and to magneto-hydrodynamic (MHD) effects increases and with it the motivation for a CMR triggering alternative. This study explores the suitability of acoustic cardiac triggering (ACT) for left ventricular (LV) function assessment in healthy subjects (n = 14). METHODS: Quantitative analysis of 2D CINE steady-state free precession (SSFP) images was conducted to compare ACT's performance with vector ECG (VCG). Endocardial border sharpness (EBS) was examined paralleled by quantitative LV function assessment. RESULTS: Unlike VCG, ACT provided signal traces free of interference from EMF or MHD effects. In the case of correct R-wave recognition, VCG-triggered 2D CINE SSFP was immune to cardiac motion effects-even at 3.0 T. However, VCG-triggered 2D SSFP CINE imaging was prone to cardiac motion and EBS degradation if R-wave misregistration occurred. ACT-triggered acquisitions yielded LV parameters (end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF) and left ventricular mass (LVM)) comparable with those derived from VCG-triggered acquisitions (1.5 T: ESV(VCG) = (56 +/- 17) ml, EDV(VCG) = (151 +/- 32) ml, LVM(VCG) = (97 +/- 27) g, SV(VCG) = (94 +/- 19) ml, EF(VCG) = (63 +/- 5)% cf. ESV(ACT) = (56 +/- 18) ml, EDV(ACT) = (147 +/- 36) ml, LVM(ACT) = (102 +/- 29) g, SV(ACT) = (91 +/- 22) ml, EF(ACT) = (62 +/- 6)%; 3.0 T: ESV(VCG) = (55 +/- 21) ml, EDV(VCG) = (151 +/- 32) ml, LVM(VCG) = (101 +/- 27) g, SV(VCG) = (96 +/- 15) ml, EF(VCG) = (65 +/- 7)% cf. ESV(ACT) = (54 +/- 20) ml, EDV(ACT) = (146 +/- 35) ml, LVM(ACT) = (101 +/- 30) g, SV(ACT) = (92 +/- 17) ml, EF(ACT) = (64 +/- 6)%). CONCLUSIONS: ACT's intrinsic insensitivity to interference from electromagnetic fields renders it suitable for clinical CMR.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca/métodos , Eletrocardiografia/métodos , Imagem Cinética por Ressonância Magnética/métodos , Fonocardiografia/métodos , Disfunção Ventricular Esquerda/diagnóstico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
14.
Magn Reson Med ; 59(6): 1373-7, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18506802

RESUMO

A dual-bolus protocol can overcome limitations due to T1-induced MR signal attenuation and hence enables more accurate quantification of myocardial blood flow (MBF) by contrast enhanced MR perfusion imaging. The study explores potential benefits of the dual-bolus technique for the assessment of myocardial perfusion reserve (MPR) over a standard single-bolus protocol. Nineteen patients without obstructive coronary artery disease as assessed by cardiac catheterization underwent a stress-rest MR perfusion study using a dual-bolus protocol. Gd-DTPA dosages of 0.005 and 0.05 mmol/kg of bodyweight were delivered as pre- and main-bolus. For comparison arterial input curves where extracted from left ventricular cavity passage including both, pre-bolus and main-bolus data. Global and segmental MPR were determined from semiquantitative and from full quantitative measures of MBF. As a result good agreement between dual- and single-bolus technique was found with relative differences of maximally 10% in global MPR estimates. For the dual bolus approach a significant relative decrease of 30% (P<0.001) was found for the coefficient of segmental MPR variation, which may allow a more reliable detection of hypoperfused segments in clinical studies.


Assuntos
Meios de Contraste/administração & dosagem , Circulação Coronária/fisiologia , Gadolínio DTPA/administração & dosagem , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Análise de Variância , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA