Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Speech Lang Pathol ; 25(1): 9-14, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36476000

RESUMO

PURPOSE: This invited commentary addresses the importance of the senses in human communication, outlines advances achieved with cochlear implants, and new research directions to improve neural prostheses. RESULT: In severely deaf people, cochlear implants restore speech understanding and enable children to achieve spoken language. Research in neural prostheses is advancing the restoration of hearing, vision, tactile senses, movement and the management of epilepsy. Bio-inspired stimulation strategies incorporating temporal and spatial characteristics of neural responses may deliver improved speech, vision and tactile perception using prostheses. To achieve stable long-term stimulation, chronic inflammation at the brain-electrode interface may be reduced using ROCK/Rho signalling pathway inhibitors and materials with brain-mimicking properties. CONCLUSION: This commentary paper addresses two Sustainable Development Goals: industry, innovation and infrastructure (SDG 9) and good health and well-being (SDG 3).


Assuntos
Implante Coclear , Implantes Cocleares , Criança , Humanos , Desenvolvimento Sustentável , Fala
2.
ACS Biomater Sci Eng ; 8(7): 2764-2797, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35696306

RESUMO

Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.


Assuntos
Bioimpressão , Medicina Regenerativa , Bioimpressão/métodos , Setor de Assistência à Saúde , Humanos , Impressão Tridimensional , Medicina Regenerativa/métodos , Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA