Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Environ Health Res ; 34(4): 1926-1943, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36745741

RESUMO

Air pollution is a critical public health concern. The present study assessed the risk to human health of airborne Potentially Toxic Elements (PTE) arsenic, nickel and lead exposure in particulate matter (PM10-2.5) in Sao Paulo, Brazil. Statistical analysis was performed using R Software and the risk assessment for human health was carried out according to the methods of the United States Environmental Protection Agency. The results for mean annual concentration of PTE (ng m-3) were within the limits stipulated for air-quality by international agencies (arsenic <6, nickel <20 and lead <150). Airborne arsenic and lead showed higher mean concentrations during the winter than the other seasons (p < 0.05). However, the results showed a greater health risk for the adult population and during the winter season. These findings highlight the importance of air pollution as a risk factor for population health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Arsênio , Humanos , Adulto , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Arsênio/toxicidade , Arsênio/análise , Níquel/toxicidade , Níquel/análise , Brasil , Chumbo/toxicidade , Chumbo/análise , Poluição do Ar/análise , Estações do Ano , Monitoramento Ambiental
2.
Artigo em Inglês | MEDLINE | ID: mdl-37174225

RESUMO

We applied the AirQ+ model to analyze the 2021 data within our study period (15 December 2020 to 17 June 2022) to quantitatively estimate the number of specific health outcomes from long- and short-term exposure to atmospheric pollutants that could be avoided by adopting the new World Health Organization Air Quality Guidelines (WHO AQGs) in São Paulo, Southeastern Brazil. Based on temporal variations, PM2.5, PM10, NO2, and O3 exceeded the 2021 WHO AQGs on up to 54.4% of the days during sampling, mainly in wintertime (June to September 2021). Reducing PM2.5 values in São Paulo, as recommended by the WHO, could prevent 113 and 24 deaths from lung cancer (LC) and chronic obstructive pulmonary disease (COPD) annually, respectively. Moreover, it could avoid 258 and 163 hospitalizations caused by respiratory (RD) and cardiovascular diseases (CVD) due to PM2.5 exposure. The results for excess deaths by RD and CVD due to O3 were 443 and 228, respectively, and 90 RD hospitalizations due to NO2. Therefore, AirQ+ is a useful tool that enables further elaboration and implementation of air pollution control strategies to reduce and prevent hospital admissions, mortality, and economic costs due to exposure to PM2.5, O3, and NO2 in São Paulo.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Humanos , Poluentes Atmosféricos/análise , Brasil/epidemiologia , Dióxido de Nitrogênio , Material Particulado/análise , Exposição Ambiental/análise , Poluição do Ar/análise , Doenças Cardiovasculares/epidemiologia , Medição de Risco
3.
Sci Total Environ ; 711: 135064, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31831243

RESUMO

Good quality ambient air is recognised as an important factor of social justice. In addition, providing access to high-capacity public transportation in big cities is known to be a good practice of social equity, as well as economic and environmental sustainability. However, the health risks associated with air pollution are not distributed equally across cities; the most vulnerable people are more exposed to ambient air as they commute to work and wait for buses or trains at the stations. The overall goal of this work was to assess the determinants of human exposure to particulate matter (PM) during commuting time spent inside bus terminals in the Metropolitan Area of Sao Paulo (MASP), in Brazil. Fine and coarse particles were collected at four bus terminals in the MASP. The concentrations of PM and its harmful constituents (black carbon and metals) were used in order to estimate potential doses and the associated health risk during the time spent at bus terminals in the MASP. Our findings show that bus commuters travelling through the bus terminal in the MASP on weekdays inhaled up to 94% higher doses of PM10 than did those travelling outside the terminal; even on weekends, that difference was as high as 88%. Our risk assessment indicated that time spent inside a bus terminal can result in an intolerable health risk for commuters, mainly because of the Cr present in fine particles. Although bus commuters are exposed to fine particle concentrations up to 2 times lower than the worldwide average, we can affirm that inhalable particles in the MASP bus terminals pose a high carcinogenic risk to the daily users of those terminals, mainly those in the most susceptible groups, which include people with heart or lung disease, older adults and children.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA