Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Injury ; 54(12): 111080, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802738

RESUMO

OBJECTIVES: This study explored the efficacy of collecting temporal fracture site compliance data via an advanced direct electromagnetic coupling (DEC) system equipped with a Vivaldi-type antenna, novel calibration technique, and multi-antenna setup (termed maDEC) as an approach to monitor acute fracture healing progress in a translational large animal model. The overarching goal of this approach was to provide insights into the acute healing dynamics, offering a promising avenue for optimizing fracture management strategies. METHODS: A sample of twelve sheep, subjected to ostectomies and intramedullary nail fixations, was divided into two groups, simulating normal and impaired healing scenarios. Sequential maDEC compliance or stiffness measurements and radiographs were taken from the surgery until euthanasia at four or eight weeks and were subsequently compared with post-sacrifice biomechanical, micro-CT, and histological findings. RESULTS: The results showed that the maDEC system offered straightforward quantification of fracture site compliance via a multiantenna array. Notably, the rate of change in the maDEC-measured bending stiffness significantly varied between normal and impaired healing groups during both the 4-week (p = 0.04) and 8-week (p = 0.02) periods. In contrast, radiographically derived mRUST healing measurements displayed no significant differences between the groups (p = 0.46). Moreover, the cumulative normalized stiffness maDEC data significantly correlated with post-sacrifice mechanical strength (r2 = 0.80, p < 0.001), micro-CT measurements of bone volume fraction (r2 = 0.60, p = 0.003), and density (r2 = 0.60, p = 0.003), and histomorphometric measurements of new bone area fraction (r2 = 0.61, p = 0.003) and new bone area (r2 = 0.60, p < 0.001). CONCLUSIONS: These data indicate that the enhanced maDEC system provides a non-invasive, accurate method to monitor fracture healing during the acute healing phase, showing distinct stiffness profiles between normal and impaired healing groups and offering critical insights into the healing process's progress and efficiency.


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Animais , Ovinos , Fraturas Ósseas/diagnóstico por imagem , Fixadores Internos , Radiografia , Fenômenos Eletromagnéticos , Fenômenos Biomecânicos
2.
Ann Transl Med ; 9(15): 1223, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532360

RESUMO

BACKGROUND: Expedient prediction of adverse bone fracture healing (delayed- or non-union) is necessary to advise secondary treatments for improving healing outcome to minimize patient suffering. Radiographic imaging, the current standard diagnostic, remains largely ineffective at predicting nonunions during the early stages of fracture healing resulting in mean nonunion diagnosis times exceeding six months. Thus, there remains a clinical deficit necessitating improved diagnostic techniques. It was hypothesized that adverse fracture healing expresses impaired biological progression at the fracture site, thus resulting in reduced temporal progression of fracture site stiffness which may be quantified prior to the appearance of radiographic indicators of fracture healing (i.e., calcified tissue). METHODS: A novel multi-location direct electromagnetic coupling antenna was developed to diagnose relative changes in the stiffness of fractures treated by metallic orthopaedic hardware. The efficacy of this diagnostic was evaluated during fracture healing simulated by progressive destabilization of cadaveric ovine metatarsals treated by locking plate fixation (n=8). An ovine in vivo comparative fracture study (n=8) was then utilized to better characterize the performance of the developed diagnostic in a clinically translatable setting. In vivo measurements using the developed diagnostic were compared to weekly radiographic images and postmortem biomechanical, histological, and micro computed tomography analyses. RESULTS: For all cadaveric samples, the novel direct electromagnetic coupling antenna displayed significant differences at the fracture site (P<0.05) when measuring a fully fractured sample versus partially intact and fully intact fracture states. In subsequent in vivo fracture models, this technology detected significant differences (P<0.001) in fractures trending towards delayed healing during the first 30 days post-fracture. CONCLUSIONS: This technology, relative to traditional X-ray imaging, exhibits potential to greatly expedite clinical diagnosis of fracture nonunion, thus warranting additional technological development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA