RESUMO
Glyphosate can be biodegraded via the aminomethylphosponic acid (AMPA) and the sarcosine/glycine pathway leading to the formation of three intermediate products AMPA, sarcosine or glycine. The fate of the three intermediate compounds of glyphosate biodegradation including nature of non-extractable residues (NERs; harmless biogenic [NERsbiogenic] versus hazardous xenobiotic [NERsxenobiotic]) in soils has not been investigated yet. This information is crucial for an assessment of environmental risks related to the speciation of glyphosate-derived NERs which may stem from glyphosate intermediates. Therefore, we incubated 13C- and 15N-labeled glyphosate (2-13C,15N-glyphosate) and its degradation product AMPA (13C,15N-AMPA), sarcosine (13C3,15N-sarcosine) or glycine (13C2,15N-glycine) in an agricultural soil separately for a period of 75 days. 13C2-glycine and 13C3-sarcosine mineralized rapidly compared to 2-13C-glyphosate and 13C-AMPA. The mineralization of 13C-AMPA was lowest among all four compounds due to its persistent nature. Only 0.5% of the initially added 2-13C,15N-glyphosate and still about 30% of the initially added 13C,15N-AMPA was extracted from soil after 75 days. The NERs formed from 13C,15N-AMPA were mostly NERsxenobiotic as compared to other three compounds for which significant amounts of NERsbiogenic were determined. We noticed 2-13C,15N-glyphosate was biodegraded via two biodegradation pathways simultaneously; however, the sarcosine/glycine pathway with the formation of harmless NERsbiogenic presumably dominated.
Assuntos
Herbicidas , Poluentes do Solo , Sarcosina , Solo/química , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Xenobióticos , Herbicidas/metabolismo , Glicina/química , Medição de Risco , Poluentes do Solo/metabolismo , GlifosatoRESUMO
Planted filters are often used to remove pesticides from runoff water. However, the detailed fate of pesticides in the planted filters still remains elusive. This hampers an accurate assessment of environmental risks of the pesticides related to their fate and thereby development of proper mitigation strategies. In addition, a test system for the chemical fate analysis including plants and in particular for planted filters is not well established yet. Therefore, we developed a microcosm test to simulate the fate of pesticide in planted filters, and applied 2-13C,15N-glyphosate as a model pesticide. The fate of 2-13C,15N-glyphosate in the planted microcosms over 31 day-incubation period was balanced and compared with that in the unplanted microcosms. The mass balance of 2-13C,15N-glyphosate turnover included 13C mineralization, degradation products, and the 13C and 15N incorporation into the rhizosphere microbial biomass and plants. We observed high removal of glyphosate (> 88%) from the water mainly due to adsorption on gravel in both microcosms. More glyphosate was degraded in the planted microcosms with 4.1% of 13C being mineralized, 1.5% of 13C and 3.8% of 15N being incorporated into microbial biomass. In the unplanted microcosms, 1.1% of 13C from 2-13C,15N-glyphosate was mineralized, and only 0.2% of 13C and 0.1% of 15N were assimilated into microbial biomass. The total recovery of 13C and 15N was 81% and 85% in planted microcosms, and 91% and 93% in unplanted counterparts, respectively. The microcosm test was thus proven to be feasible for mass balance assessments of the fate of non-volatile chemicals in planted filters. The results of such studies could help better manage and design planted filters for pesticide removal.
Assuntos
Praguicidas , Praguicidas/metabolismo , Água/metabolismo , Glicina , Plantas/metabolismo , GlifosatoRESUMO
Environmental fate assessment of chemicals involves standardized simulation tests with isotope-labeled molecules to balance transformation, mineralization, and formation of nonextractable residues (NER). Methods to predict microbial turnover and biogenic NER have been developed, having limited use when metabolites accumulate, the chemicals are not the only C source, or provide for other macroelements. To improve predictive capability, we extended a recently developed method for microbial growth yield estimation to account for incomplete degradation and multiple-element assimilation and combined it with a dynamic model for fate description in soils and sediments. We evaluated the results against the unique experimental data of 13C3-15N co-labeled glyphosate turnover with AMPA formation in water-sediment systems (OECD 308). Balancing 13C- and 15N- fluxes to biomass showed a pronounced shift of glyphosate transformation from full mineralization to AMPA formation. This may be explained by various hypotheses, for example, the limited substrate turnover inherent to the batch conditions of the test system causing microbial starvation or inhibition by P release. Modeling results indicate initial N overload due to the lower C/N ratio in glyphosate compared to average cell composition leading to subsequent C demand and accumulation of AMPA.