Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(50): e2300771, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37691091

RESUMO

Diatoms have long been used as living biological indicators for the assessment of water quality in lakes and rivers worldwide. While this approach benefits from the great diversity of these unicellular algae, established protocols are time-consuming and require specialized equipment. Here, this work 3D prints diatom-laden hydrogels that can be used as a simple multiplex bio-indicator for water assessment. The hydrogel-based living materials are created with the help of a desktop extrusion-based printer using a suspension of diatoms, cellulose nanocrystals (CNC) and alginate as bio-ink constituents. Rheology and mechanical tests are employed to establish optimum bio-ink formulations, whereas cell culture experiments are utilized to evaluate the proliferation of the entrapped diatoms in the presence of selected water contaminants. Bioprinting of diatom-laden hydrogels is shown to be an enticing approach to generate living materials that can serve as low-cost bio-indicators for water quality assessment.


Assuntos
Bioimpressão , Diatomáceas , Bioimpressão/métodos , Qualidade da Água , Hidrogéis/química , Reologia , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Tinta
2.
Nano Lett ; 9(10): 3635-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19739594

RESUMO

Conducting polymers for battery applications have been subject to numerous investigations during the last two decades. However, the functional charging rates and the cycling stabilities have so far been found to be insufficient for practical applications. These shortcomings can, at least partially, be explained by the fact that thick layers of the conducting polymers have been used to obtain sufficient capacities of the batteries. In the present letter, we introduce a novel nanostructured high-surface area electrode material for energy storage applications composed of cellulose fibers of algal origin individually coated with a 50 nm thin layer of polypyrrole. Our results show the hitherto highest reported charge capacities and charging rates for an all polymer paper-based battery. The composite conductive paper material is shown to have a specific surface area of 80 m(2) g(-1) and batteries based on this material can be charged with currents as high as 600 mA cm(-2) with only 6% loss in capacity over 100 subsequent charge and discharge cycles. The aqueous-based batteries, which are entirely based on cellulose and polypyrrole and exhibit charge capacities between 25 and 33 mAh g(-1) or 38-50 mAh g(-1) per weight of the active material, open up new possibilities for the production of environmentally friendly, cost efficient, up-scalable and lightweight energy storage systems.


Assuntos
Fontes de Energia Bioelétrica , Celulose/química , Papel , Fontes de Energia Bioelétrica/economia , Nanoestruturas/química , Polímeros/química , Pirróis/química , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA