Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 70(9): 2741-2751, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37027280

RESUMO

OBJECTIVE: Knee osteoarthritis is currently one of the top causes of disability in older population, a rate that will only increase in the future due to an aging population and the prevalence of obesity. However, objective assessment of treatment outcomes and remote evaluation are still in need of further development. Acoustic emission (AE) monitoring in knee diagnostics has been successfully adopted in the past; however, a wide discrepancy among the adopted AE techniques and analyses exists. This pilot study determined the most suitable metrics to differentiate progressive cartilage damage and the optimal frequency range and placement of AE sensors. METHODS: Knee AEs were recorded in the 100-450 kHz and 15-200kH frequency ranges from a cadaver specimen in knee flexion/extension. Four stages of artificially inflicted cartilage damage and two sensor positions were investigated. RESULTS: AE events in the lower frequency range and the following parameters provided better distinction between intact and damaged knee: hit amplitude, signal strength, and absolute energy. The medial condyle area of the knee was less prone to artefacts and unsystematic noise. Multiple reopenings of the knee compartment in the process of introducing the damage negatively affected the quality of the measurements. CONCLUSION: Results may improve AE recording techniques in future cadaveric and clinical studies. SIGNIFICANCE: This was the first study to evaluate progressive cartilage damage using AEs in a cadaver specimen. The findings of this study encourage further investigation of joint AE monitoring techniques.


Assuntos
Articulação do Joelho , Osteoartrite do Joelho , Humanos , Idoso , Projetos Piloto , Cadáver , Acústica , Cartilagem
2.
Sensors (Basel) ; 20(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192204

RESUMO

A wristwatch-based wireless sensor platform for IoT wearable health monitoring applications is presented. The paper describes the platform in detail, with a particular focus given to the design of a novel and compact wireless sub-system for 868 MHz wristwatch applications. An example application using the developed platform is discussed for arterial oxygen saturation (SpO2) and heart rate measurement using optical photoplethysmography (PPG). A comparison of the wireless performance in the 868 MHz and the 2.45 GHz bands is performed. Another contribution of this work is the development of a highly integrated 868 MHz antenna. The antenna structure is printed on the surface of a wristwatch enclosure using laser direct structuring (LDS) technology. At 868 MHz, a low specific absorption rate (SAR) of less than 0.1% of the maximum permissible limit in the simulation is demonstrated. The measured on-body prototype antenna exhibits a -10 dB impedance bandwidth of 36 MHz, a peak realized gain of -4.86 dBi and a radiation efficiency of 14.53% at 868 MHz. To evaluate the performance of the developed 868 MHz sensor platform, the wireless communication range measurements are performed in an indoor environment and compared with a commercial Bluetooth wristwatch device.


Assuntos
Internet das Coisas/instrumentação , Monitorização Ambulatorial/instrumentação , Oximetria/instrumentação , Fotopletismografia/instrumentação , Tecnologia sem Fio/instrumentação , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Impedância Elétrica , Meio Ambiente , Desenho de Equipamento , Saúde , Humanos , Aplicativos Móveis , Monitorização Ambulatorial/métodos , Oximetria/métodos , Fotopletismografia/métodos , Punho
3.
Sensors (Basel) ; 18(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154305

RESUMO

The Lensless Smart Sensor (LSS) developed by Rambus, Inc. is a low-power, low-cost visual sensing technology that captures information-rich optical data in a tiny form factor using a novel approach to optical sensing. The spiral gratings of LSS diffractive grating, coupled with sophisticated computational algorithms, allow point tracking down to millimeter-level accuracy. This work is focused on developing novel algorithms for the detection of multiple points and thereby enabling hand tracking and gesture recognition using the LSS. The algorithms are formulated based on geometrical and mathematical constraints around the placement of infrared light-emitting diodes (LEDs) on the hand. The developed techniques dynamically adapt the recognition and orientation of the hand and associated gestures. A detailed accuracy analysis for both hand tracking and gesture classification as a function of LED positions is conducted to validate the performance of the system. Our results indicate that the technology is a promising approach, as the current state-of-the-art focuses on human motion tracking that requires highly complex and expensive systems. A wearable, low-power, low-cost system could make a significant impact in this field, as it does not require complex hardware or additional sensors on the tracked segments.


Assuntos
Gestos , Mãos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Movimento , Algoritmos , Calibragem , Humanos , Monitorização Fisiológica/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA