Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur Heart J Cardiovasc Imaging ; 23(9): 1231-1239, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-34568942

RESUMO

AIMS: Atrial septal defects (ASD) are associated with atrial arrhythmias, but the arrhythmia substrate in these patients is poorly defined. We hypothesized that bi-atrial fibrosis is present and that right atrial fibrosis is associated with atrial arrhythmias in ASD patients. We aimed to evaluate the extent of bi-atrial fibrosis in ASD patients and to investigate the relationships between bi-atrial fibrosis, atrial arrhythmias, shunt fraction, and age. METHODS AND RESULTS: Patients with uncorrected secundum ASDs (n = 36; 50.4 ± 13.6 years) underwent cardiac magnetic resonance imaging with atrial late gadolinium enhancement. Comparison was made to non-congenital heart disease patients (n = 36; 60.3 ± 10.5 years) with paroxysmal atrial fibrillation (AF). Cardiac magnetic resonance parameters associated with atrial arrhythmias were identified and the relationship between bi-atrial structure, age, and shunt fraction studied. Bi-atrial fibrosis burden was greater in ASD patients than paroxysmal AF patients (20.7 ± 14% vs. 10.1 ± 8.6% and 14.8 ± 8.5% vs. 8.6 ± 6.1% for right and left atria respectively, P = 0.001 for both). In ASD patients, right atrial fibrosis burden was greater in those with than without atrial arrhythmias (33.4 ± 18.7% vs. 16.8 ± 10.3%, P = 0.034). On receiver operating characteristic analysis, a right atrial fibrosis burden of 32% had a 92% specificity and 71% sensitivity for predicting the presence of atrial arrhythmias. Neither age nor shunt fraction was associated with bi-atrial fibrosis burden. CONCLUSION: Bi-atrial fibrosis burden is greater in ASD patients than non-congenital heart disease patients with paroxysmal AF. Right atrial fibrosis is associated with the presence of atrial arrhythmias in ASD patients. These findings highlight the importance of right atrial fibrosis to atrial arrhythmogenesis in ASD patients.


Assuntos
Fibrilação Atrial , Comunicação Interatrial , Fibrilação Atrial/complicações , Meios de Contraste , Fibrose , Gadolínio , Átrios do Coração , Comunicação Interatrial/complicações , Comunicação Interatrial/diagnóstico por imagem , Comunicação Interatrial/patologia , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
2.
Front Cardiovasc Med ; 8: 744779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765656

RESUMO

Background: The majority of data regarding tissue substrate for post myocardial infarction (MI) VT has been collected during hemodynamically tolerated VT, which may be distinct from the substrate responsible for VT with hemodynamic compromise (VT-HC). This study aimed to characterize tissue at diastolic locations of VT-HC in a porcine model. Methods: Late Gadolinium Enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging was performed in eight pigs with healed antero-septal infarcts. Seven pigs underwent electrophysiology study with venous arterial-extra corporeal membrane oxygenation (VA-ECMO) support. Tissue thickness, scar and heterogeneous tissue (HT) transmurality were calculated at the location of the diastolic electrograms of mapped VT-HC. Results: Diastolic locations had median scar transmurality of 33.1% and a median HT transmurality 7.6%. Diastolic activation was found within areas of non-transmural scar in 80.1% of cases. Tissue activated during the diastolic component of VT circuits was thinner than healthy tissue (median thickness: 5.5 mm vs. 8.2 mm healthy tissue, p < 0.0001) and closer to HT (median distance diastolic tissue: 2.8 mm vs. 11.4 mm healthy tissue, p < 0.0001). Non-scarred regions with diastolic activation were closer to steep gradients in thickness than non-scarred locations with normal EGMs (diastolic locations distance = 1.19 mm vs. 9.67 mm for non-diastolic locations, p < 0.0001). Sites activated late in diastole were closest to steep gradients in tissue thickness. Conclusions: Non-transmural scar, mildly decreased tissue thickness, and steep gradients in tissue thickness represent the structural characteristics of the diastolic component of reentrant circuits in VT-HC in this porcine model and could form the basis for imaging criteria to define ablation targets in future trials.

3.
Int J Cardiol Heart Vasc ; 32: 100694, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33392384

RESUMO

AIMS: Left atrial (LA) remodelling is a common feature of many cardiovascular pathologies and is a sensitive marker of adverse cardiovascular outcomes. The aim of this study was to establish normal ranges for LA parameters derived from coronary computed tomographic angiography (CCTA) imaging using a standardised image processing pipeline to establish normal ranges in a previously described cohort. METHODS: CCTA imaging from 193 subjects recruited to the Budapest GLOBAL twin study was analysed. Indexed LA cavity volume (LACVi), LA surface area (LASAi), wall thickness and LA tissue volume (LATVi) were calculated. Wall thickness maps were combined into an atlas. Indexed LA parameters were compared with clinical variables to identify early markers of pathological remodelling. RESULTS: LACVi is similar between sexes (31 ml/m2 v 30 ml/m2) and increased in hypertension (33 ml/m2 v 29 ml/m2, p = 0.009). LASAi is greater in females than males (47.8 ml/m2 v 45.8 ml/m2 male, p = 0.031). Median LAWT was 1.45 mm. LAWT was lowest at the inferior portion of the posterior LA wall (1.14 mm) and greatest in the septum (median = 2.0 mm) (p < 0.001). Conditions known to predispose to the development of AF were not associated with differences in tissue thickness. CONCLUSIONS: The reported LACVi, LASAi, LATVi and tissue thickness derived from CCTA may serve as reference values for this age group and clinical characteristics for future studies. Increased LASAi in females in the absence of differences in LACVi or LATVi may indicate differential LA shape changes between the sexes. AF predisposing conditions, other than sex, were not associated with detectable changes in LAWT.Clinical trial registration:http://www.ClinicalTrials.gov/NCT01738828.

4.
Circ Cardiovasc Imaging ; 13(12): e011512, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33317334

RESUMO

BACKGROUND: Pathological atrial fibrosis is a major contributor to sustained atrial fibrillation. Currently, late gadolinium enhancement (LGE) scans provide the only noninvasive estimate of atrial fibrosis. However, widespread adoption of atrial LGE has been hindered partly by nonstandardized image processing techniques, which can be operator and algorithm dependent. Minimal validation and limited access to transparent software platforms have also exacerbated the problem. This study aims to estimate atrial fibrosis from cardiac magnetic resonance scans using a reproducible operator-independent fully automatic open-source end-to-end pipeline. METHODS: A multilabel convolutional neural network was designed to accurately delineate atrial structures including the blood pool, pulmonary veins, and mitral valve. The output from the network removed the operator dependent steps in a reproducible pipeline and allowed for automated estimation of atrial fibrosis from LGE-cardiac magnetic resonance scans. The pipeline results were compared against manual fibrosis burdens, calculated using published thresholds: image intensity ratio 0.97, image intensity ratio 1.61, and mean blood pool signal +3.3 SD. RESULTS: We validated our methods on a large 3-dimensional LGE-cardiac magnetic resonance data set from 207 labeled scans. Automatic atrial segmentation achieved a 91% Dice score, compared with the mutual agreement of 85% in Dice seen in the interobserver analysis of operators. Intraclass correlation coefficients of the automatic pipeline with manually generated results were excellent and better than or equal to interobserver correlations for all 3 thresholds: 0.94 versus 0.88, 0.99 versus 0.99, 0.99 versus 0.96 for image intensity ratio 0.97, image intensity ratio 1.61, and +3.3 SD thresholds, respectively. Automatic analysis required 3 minutes per case on a standard workstation. The network and the analysis software are publicly available. CONCLUSIONS: Our pipeline provides a fully automatic estimation of fibrosis burden from LGE-cardiac magnetic resonance scans that is comparable to manual analysis. This removes one key source of variability in the measurement of atrial fibrosis.


Assuntos
Átrios do Coração/diagnóstico por imagem , Cardiopatias/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Automação , Meios de Contraste , Fibrose , Átrios do Coração/patologia , Cardiopatias/patologia , Humanos , Variações Dependentes do Observador , Compostos Organometálicos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
5.
Europace ; 21(12): 1817-1823, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31793653

RESUMO

AIMS: A point-by-point workflow for pulmonary vein isolation (PVI) targeting pre-defined Ablation Index values (a composite of contact force, time, and power) and minimizing interlesion distance may optimize the creation of contiguous ablation lesions whilst minimizing scar formation. We aimed to compare ablation scar formation in patients undergoing PVI using this workflow to patients undergoing a continuous catheter drag workflow. METHODS AND RESULTS: Post-ablation cardiovascular magnetic resonance imaging was performed in patients undergoing 1st-time PVI using a parameter-guided point-by-point workflow (n = 26). Total left atrial scar burden and the width and continuity of the pulmonary vein encirclement were determined on analysis of atrial late gadolinium enhancement sequences. Comparison was made with a cohort of patients (n = 20) undergoing PVI using continuous drag lesions. Mean post-ablation scar burden and scar width were significantly lower in the point-by-point group than in the control group (6.6 ± 6.8% vs. 9.6 ± 5.0%, P = 0.03 and 7.9 ± 3.6 mm vs. 10.7 ± 2.3 mm, P = 0.003). More complete bilateral pulmonary vein encirclements were seen in the point-by-point group (P = 0.038). All patients achieved acute PVI. CONCLUSION: Pulmonary vein isolation using a point-by-point workflow is feasible and results in a lower scar burden and scar width with more complete pulmonary vein encirclements than a conventional drag lesion approach.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter , Cicatriz/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Veias Pulmonares/diagnóstico por imagem , Veias Pulmonares/cirurgia , Técnicas de Imagem de Sincronização Cardíaca , Meios de Contraste , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Organometálicos , Fluxo de Trabalho
7.
Europace ; 21(9): 1432-1441, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31219547

RESUMO

AIMS: Potential advantages of real-time magnetic resonance imaging (MRI)-guided electrophysiology (MR-EP) include contemporaneous three-dimensional substrate assessment at the time of intervention, improved procedural guidance, and ablation lesion assessment. We evaluated a novel real-time MR-EP system to perform endocardial voltage mapping and assessment of delayed conduction in a porcine ischaemia-reperfusion model. METHODS AND RESULTS: Sites of low voltage and slow conduction identified using the system were registered and compared to regions of late gadolinium enhancement (LGE) on MRI. The Sorensen-Dice similarity coefficient (DSC) between LGE scar maps and voltage maps was computed on a nodal basis. A total of 445 electrograms were recorded in sinus rhythm (range: 30-186) using the MR-EP system including 138 electrograms from LGE regions. Pacing captured at 103 sites; 47 (45.6%) sites had a stimulus-to-QRS (S-QRS) delay of ≥40 ms. Using conventional (0.5-1.5 mV) bipolar voltage thresholds, the sensitivity and specificity of voltage mapping using the MR-EP system to identify MR-derived LGE was 57% and 96%, respectively. Voltage mapping had a better predictive ability in detecting LGE compared to S-QRS measurements using this system (area under curve: 0.907 vs. 0.840). Using an electrical threshold of 1.5 mV to define abnormal myocardium, the total DSC, scar DSC, and normal myocardium DSC between voltage maps and LGE scar maps was 79.0 ± 6.0%, 35.0 ± 10.1%, and 90.4 ± 8.6%, respectively. CONCLUSION: Low-voltage zones and regions of delayed conduction determined using a real-time MR-EP system are moderately associated with LGE areas identified on MRI.


Assuntos
Doença do Sistema de Condução Cardíaco/diagnóstico por imagem , Doença do Sistema de Condução Cardíaco/fisiopatologia , Técnicas Eletrofisiológicas Cardíacas/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Taquicardia Ventricular/diagnóstico por imagem , Taquicardia Ventricular/fisiopatologia , Animais , Doença do Sistema de Condução Cardíaco/etiologia , Doença do Sistema de Condução Cardíaco/cirurgia , Ablação por Cateter , Modelos Animais de Doenças , Imageamento por Ressonância Magnética/métodos , Masculino , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Cirurgia Assistida por Computador , Sus scrofa , Suínos , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA