Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Imaging Biol ; 22(2): 453-461, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31209778

RESUMO

PURPOSE: To compare annotation segmentation approaches and to assess the value of radiomics analysis applied to diffusion-weighted imaging (DWI) for evaluation of breast cancer receptor status and molecular subtyping. PROCEDURES: In this IRB-approved HIPAA-compliant retrospective study, 91 patients with treatment-naïve breast malignancies proven by image-guided breast biopsy, (luminal A, n = 49; luminal B, n = 8; human epidermal growth factor receptor 2 [HER2]-enriched, n = 11; triple negative [TN], n = 23) underwent multiparametric magnetic resonance imaging (MRI) of the breast at 3 T with dynamic contrast-enhanced MRI, T2-weighted and DW imaging. Lesions were manually segmented on high b-value DW images and segmentation ROIS were propagated to apparent diffusion coefficient (ADC) maps. In addition in a subgroup (n = 79) where lesions were discernable on ADC maps alone, these were also directly segmented there. To derive radiomics signatures, the following features were extracted and analyzed: first-order histogram (HIS), co-occurrence matrix (COM), run-length matrix (RLM), absolute gradient, autoregressive model (ARM), discrete Haar wavelet transform (WAV), and lesion geometry. Fisher, probability of error and average correlation, and mutual information coefficients were used for feature selection. Linear discriminant analysis followed by k-nearest neighbor classification with leave-one-out cross-validation was applied for pairwise differentiation of receptor status and molecular subtyping. Histopathologic results were considered the gold standard. RESULTS: For lesion that were segmented on DWI and segmentation ROIs were propagated to ADC maps the following classification accuracies > 90% were obtained: luminal B vs. HER2-enriched, 94.7 % (based on COM features); luminal B vs. others, 92.3 % (COM, HIS); and HER2-enriched vs. others, 90.1 % (RLM, COM). For lesions that were segmented directly on ADC maps, better results were achieved yielding the following classification accuracies: luminal B vs. HER2-enriched, 100 % (COM, WAV); luminal A vs. luminal B, 91.5 % (COM, WAV); and luminal B vs. others, 91.1 % (WAV, ARM, COM). CONCLUSIONS: Radiomic signatures from DWI with ADC mapping allows evaluation of breast cancer receptor status and molecular subtyping with high diagnostic accuracy. Better classification accuracies were obtained when breast tumor segmentations could be performed on ADC maps.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Adulto , Idoso , Biópsia , Carcinoma Ductal de Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/metabolismo , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade , Receptor ErbB-2/metabolismo , Estudos Retrospectivos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/metabolismo
2.
Breast Cancer Res ; 21(1): 106, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31514736

RESUMO

BACKGROUND: To evaluate the diagnostic performance of radiomic signatures extracted from contrast-enhanced magnetic resonance imaging (CE-MRI) for the assessment of breast cancer receptor status and molecular subtypes. METHODS: One hundred and forty-three patients with biopsy-proven breast cancer who underwent CE-MRI at 3 T were included in this IRB-approved HIPAA-compliant retrospective study. The training dataset comprised 91 patients (luminal A, n = 49; luminal B, n = 8; HER2-enriched, n = 11; triple negative, n = 23), while the validation dataset comprised 52 patients from a second institution (luminal A, n = 17; luminal B, n = 17; triple negative, n = 18). Radiomic analysis of manually segmented tumors included calculation of features derived from the first-order histogram (HIS), co-occurrence matrix (COM), run-length matrix (RLM), absolute gradient (GRA), autoregressive model (ARM), discrete Haar wavelet transform (WAV), and lesion geometry (GEO). Fisher, probability of error and average correlation (POE + ACC), and mutual information coefficients were used for feature selection. Linear discriminant analysis followed by k-nearest neighbor classification (with leave-one-out cross-validation) was used for pairwise radiomic-based separation of receptor status and molecular subtypes. Histopathology served as the standard of reference. RESULTS: In the training dataset, radiomic signatures yielded the following accuracies > 80%: luminal B vs. luminal A, 84.2% (mainly based on COM features); luminal B vs. triple negative, 83.9% (mainly based on GEO features); luminal B vs. all others, 89% (mainly based on COM features); and HER2-enriched vs. all others, 81.3% (mainly based on COM features). Radiomic signatures were successfully validated in the separate validation dataset for luminal A vs. luminal B (79.4%) and luminal B vs. triple negative (77.1%). CONCLUSIONS: In this preliminary study, radiomic signatures with CE-MRI enable the assessment of breast cancer receptor status and molecular subtypes with high diagnostic accuracy. These results need to be confirmed in future larger studies.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Imageamento por Ressonância Magnética , Interpretação de Imagem Radiográfica Assistida por Computador , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/classificação , Feminino , Humanos , Pessoa de Meia-Idade , Receptor ErbB-2/metabolismo , Reprodutibilidade dos Testes , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA