Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 9(9): e19994, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809710

RESUMO

This study aims to assess dermal and inhalation lead exposure levels among batik industry workers and evaluate noncarcinogenic and carcinogenic health risks associated with lead exposure. We investigate potential relationships between lead exposure (dermal average daily dose and inhalation exposure concentration) and the workers' blood hemoglobin levels (Hb), as well as their urinary ALA (u-ALA) concentrations. Additionally, we explore any possible associations between Hb and u-ALA levels among the workers and identify various factors influencing lead exposure levels. A total of 30 workers were recruited for the study. Interviews and exposure sampling were conducted to measure dermal and inhaled lead exposure. Sample analysis methods include XRF for exposure samples, spectrophotometry for u-ALA, and HiCN colorimetric for Hb. Carcinogenic and noncarcinogenic risk assessments, correlation analysis, as well as ANOVA for factors analysis, were performed. The average dermal exposure dose and inhalation exposure concentration of lead were 6.53 ± 3.2 ng/kg/day and 0.021 ± 0.015 µg/m3, respectively. Hazard Index (HI) values for all workers were below 1 (average: 0.372 ± 0.155), indicating no expected noncarcinogenic health effects due to lead exposure. The average Excess Lifetime Cancer Risk (ELCR) was (5.18 ± 3.84) × 10-8, significantly below acceptable limits. Correlation analysis revealed a significant negative correlation between Hb and u-ALA (r = -0.519, p = 0.058 for male workers and r = -0.531, p = 0.034 for female workers), supporting their use as lead exposure biomarkers. The factors analysis demonstrated a significant impact of working conditions on inhalation exposure (p = 0.018), with outdoor workers experiencing lower lead inhalation. This research provides crucial insights into potential dangers faced by batik workers due to lead exposure, emphasizing the importance of targeted interventions. The strong correlation between Hb and u-ALA indicates their combined effectiveness in detecting lead exposure, even at low levels. The study underscores the significance of outdoor work as a protective measure against inhaling heavy metals, such as lead, present in the air. The assessment of health risks associated with lead exposure in the batik industry lays the groundwork for informed decision-making and interventions to protect workers' well-being, particularly in informal sectors workplaces where health risks are often overlooked.

2.
Environ Toxicol Chem ; 39(8): 1485-1505, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32474951

RESUMO

Environmental and human health challenges are pronounced in Asia, an exceptionally diverse and complex region where influences of global megatrends are extensive and numerous stresses to environmental quality exist. Identifying priorities necessary to engage grand challenges can be facilitated through horizon scanning exercises, and to this end we identified and examined 23 priority research questions needed to advance toward more sustainable environmental quality in Asia, as part of the Global Horizon Scanning Project. Advances in environmental toxicology, environmental chemistry, biological monitoring, and risk-assessment methodologies are necessary to address the adverse impacts of environmental stressors on ecosystem services and biodiversity, with Asia being home to numerous biodiversity hotspots. Intersections of the food-energy-water nexus are profound in Asia; innovative and aggressive technologies are necessary to provide clean water, ensure food safety, and stimulate energy efficiency, while improving ecological integrity and addressing legacy and emerging threats to public health and the environment, particularly with increased aquaculture production. Asia is the largest chemical-producing continent globally. Accordingly, sustainable and green chemistry and engineering present decided opportunities to stimulate innovation and realize a number of the United Nations Sustainable Development Goals. Engaging the priority research questions identified herein will require transdisciplinary coordination through existing and nontraditional partnerships within and among countries and sectors. Answering these questions will not be easy but is necessary to achieve more sustainable environmental quality in Asia. Environ Toxicol Chem 2020;39:1485-1505. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecossistema , Desenvolvimento Sustentável , Animais , Ásia , Biodiversidade , Ecotoxicologia , Poluentes Ambientais/análise , Humanos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA