Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 97(5): 695-703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33617430

RESUMO

PURPOSE: The present study investigated the biological effects of spot scanning and passive scattering proton therapies at the distal end region of the spread-out Bragg peak (SOBP) using single cell and multicell spheroids. MATERIALS AND METHODS: The Geant4 Monte Carlo simulation was used to calculate linear energy transfer (LET) values in passive scattering and spot scanning beams. The biological doses of the two beam options at various points of the distal end region of SOBP were investigated using EMT6 single cells and 0.6-mm V79 spheroids irradiated with 6 and 15 Gy, respectively, by inserting the fractions surviving these doses onto dose-survival curves and reading the corresponding dose. RESULTS: LET values in the entrance region of SOBP were similar between the two beam options and increased at the distal end region of SOBP, where the LET value of spot scanning beams was higher than that of passive scattering beams. Increases in biological effects at the distal end region were similarly observed in single cells and spheroids; biological doses at 2-10 mm behind the distal end were 4.5-57% and 5.7-86% higher than physical doses in passive scattering and spot scanning beams, respectively, with the biological doses of spot scanning beams being higher than those of passive scattering beams (p < .05). CONCLUSIONS: In single cells and spheroids, the effects of proton irradiation were stronger than expected from measured physical doses at the distal end of SOBP and were correlated with LET increases.


Assuntos
Prótons , Espalhamento de Radiação , Esferoides Celulares/efeitos da radiação , Linhagem Celular , Transferência Linear de Energia , Método de Monte Carlo , Eficiência Biológica Relativa , Análise de Célula Única , Esferoides Celulares/citologia
2.
J Radiat Res ; 61(6): 832-841, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32880637

RESUMO

The purpose of the current study was to investigate the biological effects of protons and photons in combination with cisplatin in cultured cells and elucidate the mechanisms responsible for their combined effects. To evaluate the sensitizing effects of cisplatin against X-rays and proton beams in HSG, EMT6 and V79 cells, the combination index, a simple measure for quantifying synergism, was estimated from cell survival curves using software capable of performing the Monte Carlo calculation. Cell death and apoptosis were assessed using live cell fluorescence imaging. HeLa and HSG cells expressing the fluorescent ubiquitination-based cell cycle indicator system (Fucci) were irradiated with X-rays and protons with cisplatin. Red and green fluorescence in the G1 and S/G2/M phases, respectively, were evaluated and changes in the cell cycle were assessed. The sensitizing effects of ≥1.5 µM cisplatin were observed for both X-ray and proton irradiation (P < 0.05). In the three cell lines, the average combination index was 0.82-1.00 for X-rays and 0.73-0.89 for protons, indicating stronger effects for protons. In time-lapse imaging, apoptosis markedly increased in the groups receiving ≥1.5 µM cisplatin + protons. The percentage of green S/G2/M phase cells at that time was higher when cisplatin was combined with proton beams than with X-rays (P < 0.05), suggesting more significant G2 arrest. Proton therapy plus ≥1.5 µM cisplatin is considered to be very effective. When combined with cisplatin, proton therapy appeared to induce greater apoptotic cell death and G2 arrest, which may partly account for the difference observed in the combined effects.


Assuntos
Ciclo Celular/efeitos da radiação , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Cisplatino/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Tolerância a Radiação , Radioterapia/métodos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Cricetinae , Relação Dose-Resposta à Radiação , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes , Células HeLa , Humanos , Camundongos , Método de Monte Carlo , Fótons , Terapia com Prótons , Reprodutibilidade dos Testes , Ubiquitina/química , Raios X
3.
J Appl Clin Med Phys ; 20(1): 258-264, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30597762

RESUMO

The purpose of this study was to provide periodic quality assurance (QA) methods for respiratory-gated proton beam with a range modulation wheel (RMW) and to clarify the characteristics and long-term stability of the respiratory-gated proton beam. A two-dimensional detector array and a solid water phantom were used to measure absolute dose, spread-out Bragg peak (SOBP) width and proton range for monthly QA. SOBP width and proton range were measured using an oblique incidence beam to the lateral side of a solid water phantom and compared between with and without a gating proton beam. To measure the delay time of beam-on/off for annual QA, we collected the beam-on/off signals and the dose monitor-detected pulse. We analyzed the results of monthly QA over a 15-month period and investigated the delay time by machine signal analysis. The dose deviations at proximal, SOBP center and distal points were -0.083 ± 0.25%, 0.026 ± 0.20%, and -0.083 ± 0.35%, respectively. The maximum dose deviation between with and without respiratory gating was -0.95% at the distal point and other deviations were within ±0.5%. Proximal and SOBP center doses showed the same trend over a 15-month period. Delay times of beam-on/off for 200 MeV/SOBP 16 cm were 140.5 ± 0.8 ms and 22.3 ± 13.0 ms, respectively. Delay times for 160 MeV/SOBP 10 cm were 167.5 ± 15.1 ms and 19.1 ± 9.8 ms. Our beam delivery system with the RMW showed sufficient stability for respiratory-gated proton therapy and the system did not show dependency on the energy and the respiratory wave form. The delay times of beam-on/off were within expectations. The proposed QA methods will be useful for managing the quality of respiratory-gated proton beams and other beam delivery systems.


Assuntos
Neoplasias/radioterapia , Imagens de Fantasmas , Terapia com Prótons/métodos , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA