Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sensors (Basel) ; 23(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139544

RESUMO

Fetal heart rate (FHR) monitoring, typically using Doppler ultrasound (DUS) signals, is an important technique for assessing fetal health. In this work, we develop a robust DUS-based FHR estimation approach complemented by DUS signal quality assessment (SQA) based on unsupervised representation learning in response to the drawbacks of previous DUS-based FHR estimation and DUS SQA methods. We improve the existing FHR estimation algorithm based on the autocorrelation function (ACF), which is the most widely used method for estimating FHR from DUS signals. Short-time Fourier transform (STFT) serves as a signal pre-processing technique that allows the extraction of both temporal and spectral information. In addition, we utilize double ACF calculations, employing the first one to determine an appropriate window size and the second one to estimate the FHR within changing windows. This approach enhances the robustness and adaptability of the algorithm. Furthermore, we tackle the challenge of low-quality signals impacting FHR estimation by introducing a DUS SQA method based on unsupervised representation learning. We employ a variational autoencoder (VAE) to train representations of pre-processed fetal DUS data and aggregate them into a signal quality index (SQI) using a self-organizing map (SOM). By incorporating the SQI and Kalman filter (KF), we refine the estimated FHRs, minimizing errors in the estimation process. Experimental results demonstrate that our proposed approach outperforms conventional methods in terms of accuracy and robustness.


Assuntos
Frequência Cardíaca Fetal , Processamento de Sinais Assistido por Computador , Gravidez , Feminino , Humanos , Monitorização Fisiológica , Algoritmos , Ultrassonografia Doppler/métodos
2.
Bioengineering (Basel) ; 10(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36671638

RESUMO

OBJECTIVE: To monitor fetal health and growth, fetal heart rate is a critical indicator. The non-invasive fetal electrocardiogram is a widely employed measurement for fetal heart rate estimation, which is extracted from the electrodes placed on the surface of the maternal abdomen. The qualities of the fetal ECG recordings, however, are frequently affected by the noises from various interference sources. In general, the fetal heart rate estimates are unreliable when low-quality fetal ECG signals are used for fetal heart rate estimation, which makes accurate fetal heart rate estimation a challenging task. So, the signal quality assessment for the fetal ECG records is an essential step before fetal heart rate estimation. In other words, some low-quality fetal ECG signal segments are supposed to be detected and removed by utilizing signal quality assessment, so as to improve the accuracy of fetal heart rate estimation. A few supervised learning-based fetal ECG signal quality assessment approaches have been introduced and shown to accurately classify high- and low-quality fetal ECG signal segments, but large fetal ECG datasets with quality annotation are required in these methods. Yet, the labeled fetal ECG datasets are limited. Proposed methods: An unsupervised learning-based multi-level fetal ECG signal quality assessment approach is proposed in this paper for identifying three levels of fetal ECG signal quality. We extracted some features associated with signal quality, including entropy-based features, statistical features, and ECG signal quality indices. Additionally, an autoencoder-based feature is calculated, which is related to the reconstruction error of the spectrograms generated from fetal ECG signal segments. The high-, medium-, and low-quality fetal ECG signal segments are classified by inputting these features into a self-organizing map. MAIN RESULTS: The experimental results showed that our proposal achieved a weighted average F1-score of 90% in three-level fetal ECG signal quality classification. Moreover, with the acceptable removal of detected low-quality signal segments, the errors of fetal heart rate estimation were reduced to a certain extent.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1296-1299, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086629

RESUMO

The non-invasive fetal electrocardiogram (FECG) derived from abdominal surface electrodes has been widely used for fetal heart rate (FHR) monitoring to assess fetal well-being. However, the accuracy of FECG-based FHR estimation heavily depends on the quality of FECG signal itself, which can generally be affected by several interference sources such as maternal heart activities and fetal movements. Hence, FECG signal quality assessment (SQA) is an essential task to improve the accuracy of FHR estimation by removing or interpolating low-quality FECG signals. In recent research, various SQA methods based on supervised learning have been proposed. Although these methods could perform accurate SQA, they require large labeled datasets. Nevertheless, the labeled datasets for the FECG SQA are very limited. In this paper, to address this limitation, we propose an unsupervised learning-based SQA method for identifying high and low-quality FECG signal segments. Specifically, a fully convolutional network (FCN)-based autoencoder (AE) is trained for reconstructing a spectrogram derived from FECG. An AE-based feature related to reconstruction error is then calculated to identify high and low-quality FECG segments. In addition, entropy-based features, statistical features, and ECG signal quality indices (SQIs) are also extracted. The high and low-quality segments are identified by feeding the extracted features into self-organizing map (SOM). The experimental results showed that our proposal achieved an accuracy of 98% in high and low-quality signal classification.


Assuntos
Monitorização Fetal , Processamento de Sinais Assistido por Computador , Eletrocardiografia/métodos , Feminino , Monitorização Fetal/métodos , Feto/fisiologia , Humanos , Gravidez , Aprendizado de Máquina não Supervisionado
4.
Sensors (Basel) ; 22(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35632305

RESUMO

In this paper, we propose an activity detection system using a 24 × 32 resolution infrared array sensor placed on the ceiling. We first collect the data at different resolutions (i.e., 24 × 32, 12 × 16, and 6 × 8) and apply the advanced deep learning (DL) techniques of Super-Resolution (SR) and denoising to enhance the quality of the images. We then classify the images/sequences of images depending on the activities the subject is performing using a hybrid deep learning model combining a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM). We use data augmentation to improve the training of the neural networks by incorporating a wider variety of samples. The process of data augmentation is performed by a Conditional Generative Adversarial Network (CGAN). By enhancing the images using SR, removing the noise, and adding more training samples via data augmentation, our target is to improve the classification accuracy of the neural network. Through experiments, we show that employing these deep learning techniques to low-resolution noisy infrared images leads to a noticeable improvement in performance. The classification accuracy improved from 78.32% to 84.43% (for images with 6 × 8 resolution), and from 90.11% to 94.54% (for images with 12 × 16 resolution) when we used the CNN and CNN + LSTM networks, respectively.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Tecnologia
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4151-4155, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018912

RESUMO

To build a system for monitoring elderly people living alone, an important step needs to be done: identifying the presence/absence of the person being monitored and his location. Such task has several applications that we discuss in this paper, and remains very important. Several techniques were proposed in the literature. However, most of them suffer from issues related to privacy, coverage or convenience. In the current paper, we propose an infrared array sensor-based approach to detect the presence/absence of a person in a room. We used a wide angle low resolution sensor (i.e., 32×24 pixels) to collect heat-related information from the area monitored, and used Deep Learning (DL) to identify the presence of up to 3 people with an accuracy reaching 97%. Our approach also detects of the presence or absence of a person with a 100% accuracy. Nevertheless, it allows identifying the location of the detected people within a room of dimensions 4×7.4 m with a margin of 0.3 m.


Assuntos
Aprendizado Profundo , Nível de Saúde , Tecnologia de Sensoriamento Remoto , Idoso , Temperatura Alta , Humanos , Monitorização Fisiológica , Características de Residência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA