Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Commun ; 13(1): 7439, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509749

RESUMO

Brown adipose tissue plays a central role in the regulation of the energy balance by expending energy to produce heat. NAD+-dependent deacylase sirtuins have widely been recognized as positive regulators of brown adipose tissue thermogenesis. However, here we reveal that SIRT7, one of seven mammalian sirtuins, suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions. Whole-body and brown adipose tissue-specific Sirt7 knockout mice have higher body temperature and energy expenditure. SIRT7 deficiency increases the protein level of UCP1, a key regulator of brown adipose tissue thermogenesis. Mechanistically, we found that SIRT7 deacetylates insulin-like growth factor 2 mRNA-binding protein 2, an RNA-binding protein that inhibits the translation of Ucp1 mRNA, thereby enhancing its inhibitory action on Ucp1. Furthermore, SIRT7 attenuates the expression of batokine genes, such as fibroblast growth factor 21. In conclusion, we propose that SIRT7 serves as an energy-saving factor by suppressing brown adipose tissue functions.


Assuntos
Tecido Adiposo Marrom , Sirtuínas , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Metabolismo Energético/fisiologia , Camundongos Knockout , RNA Mensageiro/metabolismo , Mamíferos/genética , Sirtuínas/genética , Sirtuínas/metabolismo
2.
Biochem Biophys Res Commun ; 457(1): 12-8, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25534853

RESUMO

UNLABELLED: Activation of the adipose renin-angiotensin system contributes to the development of obesity and metabolic syndrome. Insulin-regulated aminopeptidase (IRAP) has been identified a key regulator of GLUT4 transporter as well as angiotensin IV (AngIV) receptor (AT4R). Although AngII-AT1R axis appears as anorexigenic and as an effector of energy expenditure, the impact of AngIV-IRAP/AT4R axis on energy metabolism remains unknown. The aim was to determine the role of IRAP in energy metabolism in mice. METHODS AND RESULTS: In adipocyte culture, plasminogen activator inhibitor type 1 (PAI-1) expression levels were diminished in IRAP knockout (IRAP(-/-)) if compared with those of wild-type (C57Bl/6J, WT) mice. Mice were fed high-fat diet (32% fat) at age of 8 weeks. At the entry, body weight, body fat content, and parameters of saccharometabolism were similar between groups. However, IRAP(-/-) mice exhibited blunted body weight gain compared to that of WT mice, despite comparable food intake and physical activity. At 20weeks of age, IRAP(-/-) mice had 25% lower body weight than WT mice. Glucose and insulin tolerance tests revealed that the glucose disposal and the hypoglycemic effect of insulin were pronounced in IRAP(-/-) mice after a high fat diet. Indirect calorimetry demonstrated that whole-body oxygen consumption rates were significantly higher in IRAP(-/-) mice by 18% with mild hyperthermia. Analysis of brown adipose tissue (BAT) in IRAP(-/-) showed increased levels of uncoupling protein-1 (UCP-1) at basal level and adaptive thermogenesis was not impaired. CONCLUSIONS: IRAP deficiency may lead to suppression of PAI-1 expression in adipocytes and upregulation of UCP-1-mediated thermogenesis in BAT and increased energy expenditure to prevent the development of obesity, and these facts suggest a therapeutic potential of IRAP/AT4R blockade in diet-induced obesity.


Assuntos
Cistinil Aminopeptidase/deficiência , Metabolismo Energético , Obesidade/metabolismo , Obesidade/prevenção & controle , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Diferenciação Celular , Temperatura Baixa , Cistinil Aminopeptidase/metabolismo , Dieta , Canais Iônicos , Gotículas Lipídicas/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais , Atividade Motora , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteína Desacopladora 1
3.
PLoS One ; 9(4): e94930, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24736588

RESUMO

Tissue inhibitors of metalloproteinases (TIMPs) regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme), its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO) mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT) mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.


Assuntos
Metabolismo Energético/genética , Termogênese/genética , Inibidor Tecidual de Metaloproteinase-3/genética , Animais , Temperatura Baixa , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Inibidor Tecidual de Metaloproteinase-3/deficiência
4.
Hypertens Res ; 34(11): 1221-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21814214

RESUMO

Nifedipine, an L-type calcium (Ca) channel blocker, is one of the most widely used Ca channel-blocking medications for hypertension. Previous studies have reported an association of nifedipine hypertensive treatment with decreased body weight in obese hypertensive humans and rat models. However, the precise mechanism underlying how nifedipine functions metabolically has not been elucidated. Here, we investigated the long-term effect of a non-hypotensive nifedipine dose using a mildly obese, endothelial NO synthase-deficient mouse model. Treating these mice with nifedipine decreased their body weight gain ratio, and white adipose tissue weight compared with the untreated controls. Metabolic analyses indicated that nifedipine treatment upregulated whole-body energy expenditure through increasing oxygen consumption and reducing the respiratory exchange ratio, suggesting that nifedipine promotes lipid oxidation rather than carbohydrate utilization. Furthermore, nifedipine treatment upregulated the expression of the peroxisome proliferator-activated receptor-γ coactivator -1α (PGC-1α) in skeletal muscle. Overall, these results suggest that a non-hypotensive dose of nifedipine has pleiotropic effects on energy expenditure that could ameliorate obesity.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Metabolismo Energético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Nifedipino/farmacologia , Obesidade/metabolismo , Transativadores/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/fisiologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Metabolismo Energético/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Obesidade/fisiopatologia , Obesidade/prevenção & controle , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA