Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139076

RESUMO

The metabolic regulation of stemness is widely recognized as a crucial factor in determining the fate of stem cells. When transferred to a stimulating and nutrient-rich environment, mesenchymal stem cells (MSCs) undergo rapid proliferation, accompanied by a change in protein expression and a significant reconfiguration of central energy metabolism. This metabolic shift, from quiescence to metabolically active cells, can lead to an increase in the proportion of senescent cells and limit their regenerative potential. In this study, MSCs from human exfoliated deciduous teeth (SHEDs) were isolated and expanded in vitro for up to 10 passages. Immunophenotypic analysis, growth kinetics, in vitro plasticity, fatty acid content, and autophagic capacity were assessed throughout cultivation to evaluate the functional characteristics of SHEDs. Our findings revealed that SHEDs exhibit distinctive patterns of cell surface marker expression, possess high self-renewal capacity, and have a unique potential for neurogenic differentiation. Aged SHEDs exhibited lower proliferation rates, reduced potential for chondrogenic and osteogenic differentiation, an increasing capacity for adipogenic differentiation, and decreased autophagic potential. Prolonged cultivation of SHEDs resulted in changes in fatty acid composition, signaling a transition from anti-inflammatory to proinflammatory pathways. This underscores the intricate connection between metabolic regulation, stemness, and aging, crucial for optimizing therapeutic applications.


Assuntos
Ácidos Graxos não Esterificados , Osteogênese , Humanos , Idoso , Ácidos Graxos não Esterificados/metabolismo , Osteogênese/fisiologia , Proliferação de Células/fisiologia , Dente Decíduo , Células-Tronco/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Ácidos Graxos/metabolismo , Polpa Dentária
2.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615613

RESUMO

One of several promising strategies for increasing the bioavailability and therapeutic potential of high-lipophilic biologically active compounds is gold nanoparticle formulation. The current study describes the synthesis and biological antimelanoma evaluation of three triterpen-functionalized gold nanoparticles, obtained using our previously reported antimelanoma benzotriazole-triterpenic acid esters. Functionalized gold nanoparticle (GNP) formation was validated through UV-VIS and FTIR spectroscopy. The conjugate's cytotoxic effects were investigated using HaCaT healthy keratinocytes and A375 human melanoma cells. On A375 cells, all three conjugates demonstrated dose-dependent cytotoxic activity, but no significant cytotoxic effects were observed on normal HaCaT keratinocytes. GNP-conjugates were found to be more cytotoxic than their parent compounds. After treatment with all three GNP-conjugates, 4,6'-diamidino-2-phenylindole (DAPI) staining revealed morphological changes consistent with apoptosis in A375 melanoma cells. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis revealed that the triterpene-GNP conjugate treated A375 melanoma cells had a fold change increase in Bcl-2-associated X protein (BAX) expression and a fold change decrease in B-cell lymphoma 2 (Bcl-2) expression. In A735 melanoma cells, high-resolution respirometry studies revealed that all three GNP-conjugates act as selective inhibitors of mitochondrial function. Furthermore, by examining the effect on each mitochondrial respiratory rate, the results indicate that all three conjugates are capable of increasing the production of reactive oxygen species (ROS), an apoptosis trigger in cancer cells.


Assuntos
Antineoplásicos , Melanoma , Nanopartículas Metálicas , Humanos , Ouro/química , Nanopartículas Metálicas/química , Apoptose , Melanoma/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
3.
Nutrients ; 11(4)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995771

RESUMO

Apigenin (4',5,7-trihydroxyflavone) (Api) is an important component of the human diet, being distributed in a wide number of fruits, vegetables and herbs with the most important sources being represented by chamomile, celery, celeriac and parsley. This study was designed for a comprehensive evaluation of Api as an antiproliferative, proapoptotic, antiangiogenic and immunomodulatory phytocompound. In the set experimental conditions, Api presents antiproliferative activity against the A375 human melanoma cell line, a G2/M arrest of the cell cycle and cytotoxic events as revealed by the lactate dehydrogenase release. Caspase 3 activity was inversely proportional to the Api tested doses, namely 30 µM and 60 µM. Phenomena of early apoptosis, late apoptosis and necrosis following incubation with Api were detected by Annexin V-PI double staining. The flavone interfered with the mitochondrial respiration by modulating both glycolytic and mitochondrial pathways for ATP production. The metabolic activity of human dendritic cells (DCs) under LPS-activation was clearly attenuated by stimulation with high concentrations of Api. Il-6 and IL-10 secretion was almost completely blocked while TNF alpha secretion was reduced by about 60%. Api elicited antiangiogenic properties in a dose-dependent manner. Both concentrations of Api influenced tumour cell growth and migration, inducing a limited tumour area inside the application ring, associated with a low number of capillaries.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apigenina/farmacologia , Dieta , Fatores Imunológicos/farmacologia , Inflamação/metabolismo , Melanoma , Trifosfato de Adenosina/metabolismo , Inibidores da Angiogênese/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Apigenina/uso terapêutico , Apoptose , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Humanos , Fatores Imunológicos/uso terapêutico , Inflamação/prevenção & controle , L-Lactato Desidrogenase/metabolismo , Lipopolissacarídeos , Magnoliopsida/química , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
4.
Int J Mol Sci ; 19(11)2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30453564

RESUMO

Chamomile, parsley, and celery represent major botanical sources of apigenin, a well-known flavone with chemopreventive properties. The aim of this study was to assess the phytochemical composition, antioxidant, and anti-inflammatory potential of methanol extracts obtained from chamomile, parsley, and celery collected from Romania, as well as the biological activity against A375 human melanoma and human dendritic cells. Results have shown that all three extracts are rich in polyphenolic compounds and flavonoids, and they generate a radical scavenger capacity, iron chelation potential, as well as lipoxygenase inhibition capacity. Chamomile and celery extracts present weak antiproliferative and pro-apoptotic properties in the set experimental conditions, while parsley extract draws out significant pro-apoptotic potential against A375 human melanoma cells. Parsley and chamomile extracts affected the fibroblast-like morphology of the screened tumor cell line. On the other hand, chamomile and celery extracts abrogated the expansion of LPS-activated dendritic cells, while the metabolic activity was attenuated by stimulation with celery extract; chamomile and parsley extracts had no effect upon this parameter. Chamomile and parsley extracts incubation with naive dendritic cells did not trigger cytokine secretion (TNF-alpha, IL-6, IL-10), but celery extract stimulation significantly reduced the anti-inflammatory, cytokine IL-10.


Assuntos
Apium/química , Camomila/química , Células Dendríticas/efeitos dos fármacos , Melanoma/patologia , Petroselinum/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Flavonoides/farmacologia , Sequestradores de Radicais Livres/farmacologia , Humanos , Inibidores de Lipoxigenase/farmacologia , Extratos Vegetais/análise , Polifenóis/análise , Polifenóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA