Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 147(14): 3315-3327, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35762367

RESUMO

The COVID-19 pandemic interrupted routine care for individuals living with HIV, putting them at risk of virologic failure and HIV-associated illness. Often this population is at high risk for exposure to SARS-CoV-2 infection, and once infected, for severe disease. Therefore, close monitoring of HIV plasma viral load (VL) and screening for SARS-CoV-2 infection are needed. We developed a non-proprietary method to isolate RNA from plasma, nasal secretions (NS), or both. The extracted RNA is then submitted to RT-qPCR to estimate the VL and classify HIV/SARS-CoV-2 status (i.e., HIV virologic failure or suppressed; SARS-CoV-2 as positive, presumptive positive, negative, or indeterminate). In contrived samples, the in-house RNA extraction workflow achieved a detection limit of 200-copies per mL for HIV RNA in plasma and 100-copies per mL for SARS-CoV-2 RNA in NS. Similar detection limits were observed for HIV and SARS-CoV-2 in pooled plasma/NS contrived samples. When comparing in-house with standard extraction methods, we found high agreement (>0.91) between input and measured RNA copies for HIV LTR in contrived plasma; SARS-CoV-2 N1/N2 in contrived NS; and LTR, N1, and N2 in pooled plasma/NS samples. We further evaluated this workflow on 133 clinical specimens: 40 plasma specimens (30 HIV-positive), 67 NS specimens (31 SARS-CoV-2-positive), and 26 combined plasma/NS specimens (26 HIV-positive with 10 SARS-CoV-2-positive), and compared the results obtained using the in-house RNA extraction to those using a commercial kit (standard extraction method). The in-house extraction and standard extraction of clinical specimens were positively correlated: plasma HIV VL (R2 of 0.81) and NS SARS-CoV-2 VL (R2 of 0.95 and 0.99 for N1 and N2 genes, respectively); and pooled plasma/NS HIV VL (R2 of 0.71) and SARS-CoV-2 VL (R2 of 1 both for N1 and N2 genes). Our low-cost molecular test workflow ($1.85 per pooled sample extraction) for HIV RNA and SARS-CoV-2 RNA could serve as an alternative to current standard assays ($12 per pooled sample extraction) for laboratories in low-resource settings.


Assuntos
COVID-19 , Infecções por HIV , COVID-19/diagnóstico , Infecções por HIV/diagnóstico , Humanos , Pandemias , RNA Viral/análise , SARS-CoV-2/genética , Sensibilidade e Especificidade , Carga Viral/métodos , Fluxo de Trabalho
2.
Sci Adv ; 7(51): eabj1281, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34910507

RESUMO

RNA amplification tests sensitively detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but their complexity and cost are prohibitive for expanding coronavirus disease 2019 (COVID-19) testing. We developed "Harmony COVID-19," a point-of-care test using inexpensive consumables, ready-to-use reagents, and a simple device. Our ready-to-use, multiplexed reverse transcription, loop-mediated isothermal amplification (RT-LAMP) can detect down to 0.38 SARS-CoV-2 RNA copies/µl and can report in 17 min for high­viral load samples (5000 copies/µl). Harmony detected 97 or 83% of contrived samples with ≥0.5 viral particles/µl in nasal matrix or saliva, respectively. Evaluation in clinical nasal specimens (n = 101) showed 100% detection of RNA extracted from specimens with ≥0.5 SARS-CoV-2 RNA copies/µl, with 100% specificity in specimens positive for other respiratory pathogens. Extraction-free analysis (n = 29) had 95% success in specimens with ≥1 RNA copies/µl. Usability testing performed first time by health care workers showed 95% accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA