Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Public Health ; 69: 1606909, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882560

RESUMO

Objectives: This study aims to estimate the short-term preventable mortality and associated economic costs of complying with the World Health Organization (WHO) air quality guidelines (AQGs) limit values for PM10 and PM2.5 in nine major Latin American cities. Methods: We estimated city-specific PM-mortality associations using time-series regression models and calculated the attributable mortality fraction. Next, we used the value of statistical life to calculate the economic benefits of complying with the WHO AQGs limit values. Results: In most cities, PM concentrations exceeded the WHO AQGs limit values more than 90% of the days. PM10 was found to be associated with an average excess mortality of 1.88% with concentrations above WHO AQGs limit values, while for PM2.5 it was 1.05%. The associated annual economic costs varied widely, between US$ 19.5 million to 3,386.9 million for PM10, and US$ 196.3 million to 2,209.6 million for PM2.5. Conclusion: Our findings suggest that there is an urgent need for policymakers to develop interventions to achieve sustainable air quality improvements in Latin America. Complying with the WHO AQGs limit values for PM10 and PM2.5 in Latin American cities would substantially benefits for urban populations.


Assuntos
Poluição do Ar , Cidades , Material Particulado , Organização Mundial da Saúde , Material Particulado/análise , Material Particulado/economia , Humanos , América Latina , Poluição do Ar/economia , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/economia , Mortalidade , Exposição Ambiental/prevenção & controle , Exposição Ambiental/economia
2.
EBioMedicine ; 84: 104251, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36088684

RESUMO

BACKGROUND: Identifying how greenspace impacts the temperature-mortality relationship in urban environments is crucial, especially given climate change and rapid urbanization. However, the effect modification of greenspace on heat-related mortality has been typically focused on a localized area or single country. This study examined the heat-mortality relationship among different greenspace levels in a global setting. METHODS: We collected daily ambient temperature and mortality data for 452 locations in 24 countries and used Enhanced Vegetation Index (EVI) as the greenspace measurement. We used distributed lag non-linear model to estimate the heat-mortality relationship in each city and the estimates were pooled adjusting for city-specific average temperature, city-specific temperature range, city-specific population density, and gross domestic product (GDP). The effect modification of greenspace was evaluated by comparing the heat-related mortality risk for different greenspace groups (low, medium, and high), which were divided into terciles among 452 locations. FINDINGS: Cities with high greenspace value had the lowest heat-mortality relative risk of 1·19 (95% CI: 1·13, 1·25), while the heat-related relative risk was 1·46 (95% CI: 1·31, 1·62) for cities with low greenspace when comparing the 99th temperature and the minimum mortality temperature. A 20% increase of greenspace is associated with a 9·02% (95% CI: 8·88, 9·16) decrease in the heat-related attributable fraction, and if this association is causal (which is not within the scope of this study to assess), such a reduction could save approximately 933 excess deaths per year in 24 countries. INTERPRETATION: Our findings can inform communities on the potential health benefits of greenspaces in the urban environment and mitigation measures regarding the impacts of climate change. FUNDING: This publication was developed under Assistance Agreement No. RD83587101 awarded by the U.S. Environmental Protection Agency to Yale University. It has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication. Research reported in this publication was also supported by the National Institute on Minority Health and Health Disparities of the National Institutes of Health under Award Number R01MD012769. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Also, this work has been supported by the National Research Foundation of Korea (2021R1A6A3A03038675), Medical Research Council-UK (MR/V034162/1 and MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), Academy of Finland (Grant ID: 310372), European Union's Horizon 2020 Project Exhaustion (Grant ID: 820655 and 874990), Czech Science Foundation (22-24920S), Emory University's NIEHS-funded HERCULES Center (Grant ID: P30ES019776), and Grant CEX2018-000794-S funded by MCIN/AEI/ 10.13039/501100011033 The funders had no role in the design, data collection, analysis, interpretation of results, manuscript writing, or decision to publication.


Assuntos
Mudança Climática , Temperatura Alta , Cidades , Meio Ambiente , Finlândia , Humanos , Mortalidade
3.
Int J Epidemiol ; 48(4): 1101-1112, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30815699

RESUMO

BACKGROUND: The health burden associated with temperature is expected to increase due to a warming climate. Populations living in cities are likely to be particularly at risk, but the role of urban characteristics in modifying the direct effects of temperature on health is still unclear. In this contribution, we used a multi-country dataset to study effect modification of temperature-mortality relationships by a range of city-specific indicators. METHODS: We collected ambient temperature and mortality daily time-series data for 340 cities in 22 countries, in periods between 1985 and 2014. Standardized measures of demographic, socio-economic, infrastructural and environmental indicators were derived from the Organisation for Economic Co-operation and Development (OECD) Regional and Metropolitan Database. We used distributed lag non-linear and multivariate meta-regression models to estimate fractions of mortality attributable to heat and cold (AF%) in each city, and to evaluate the effect modification of each indicator across cities. RESULTS: Heat- and cold-related deaths amounted to 0.54% (95% confidence interval: 0.49 to 0.58%) and 6.05% (5.59 to 6.36%) of total deaths, respectively. Several city indicators modify the effect of heat, with a higher mortality impact associated with increases in population density, fine particles (PM2.5), gross domestic product (GDP) and Gini index (a measure of income inequality), whereas higher levels of green spaces were linked with a decreased effect of heat. CONCLUSIONS: This represents the largest study to date assessing the effect modification of temperature-mortality relationships. Evidence from this study can inform public-health interventions and urban planning under various climate-change and urban-development scenarios.


Assuntos
Ambiente Construído/estatística & dados numéricos , Temperatura Baixa/efeitos adversos , Temperatura Alta/efeitos adversos , Mortalidade/tendências , Temperatura Corporal , Cidades/epidemiologia , Meio Ambiente , Humanos , Plantas , Fatores de Risco , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA