Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Opt ; 25(1): 1-11, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31933331

RESUMO

Significance: Definitive diagnostics of many diseases is based on the histological analysis of thin tissue cuts with optical white light microscopy. Extra information on tissue structural properties obtained with polarized light would help the pathologist to improve the accuracy of his diagnosis.

Aim: We report on using Mueller matrix microscopy data, logarithmic decomposition, and polarized Monte Carlo (MC) modeling for qualitative and quantitative analysis of thin tissue cuts to extract the information on tissue microstructure that is not available with a conventional white light microscopy.

Approach: Unstained cuts of human skin equivalents were measured with a custom-built liquid-crystal-based Mueller microscope in transmission configuration. To interpret experimental data, we performed the simulations with a polarized MC algorithm for scattering anisotropic media. Several optical models of tissue (spherical scatterers within birefringent host medium, and combination of spherical and cylindrical scatterers within either isotropic or birefringent host medium) were tested.

Results: A set of rotation invariants for the logarithmic decomposition of a Mueller matrix was derived to rule out the impact of sample orientation. These invariants were calculated for both simulated and measured Mueller matrices of the dermal layer of skin equivalents. We demonstrated that only the simulations with a model combining both spherical and cylindrical scatterers within birefringent host medium reproduced the experimental trends in optical properties of the dermal layer (linear retardance, linear dichroism, and anisotropic linear depolarization) with layer thickness.

Conclusions: Our studies prove that Mueller polarimetry provides relevant information not only on a size of dominant scatterers (e.g., cell nuclei versus subwavelength organelles) but also on its shape (e.g., cells versus collagen fibers). The latter is directly related to the state of extracellular collagen matrix, which is often affected by early pathology. Hence, using polarimetric data can help to increase the accuracy of diagnosis.


Assuntos
Microscopia de Polarização/instrumentação , Imagem Óptica/métodos , Refratometria/métodos , Pele/diagnóstico por imagem , Humanos , Método de Monte Carlo , Fenômenos Ópticos , Imagens de Fantasmas , Espalhamento de Radiação
2.
J Biomed Opt ; 17(10): 105006, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23064484

RESUMO

Development of methodologies for quantification/unique interpretation of the intrinsic polarimetry characteristics of biological tissues are important for various applications involving tissue characterization/diagnosis. A detailed comparative evaluation of the polar decomposition and the differential matrix decomposition of Mueller matrices for extraction/quantification of the intrinsic polarimetry characteristics (with special emphasis on linear retardance δ, optical rotation Ψ and depolarization Δ parameters was performed, because these are the most prominent tissue polarimetry effects) from complex tissue-like turbid media exhibiting simultaneous scattering and polarization effects. The results suggest that for media exhibiting simultaneous linear retardance and optical rotation polarization events, the use of retarder polar decomposition with its associated analysis which assumes sequential occurrence of these effects, results in systematic underestimation of δ and overestimation of Ψ parameters. Analytical relationships between the polarization parameters (δ, Ψ) extracted from both the retarder polar decomposition and the differential matrix decomposition for either simultaneous or sequential occurrence of the linear retardance and optical rotation effects were derived. The self-consistency of both decompositions is validated on experimental Mueller matrices recorded from tissue-simulating phantoms (whose polarization properties are controlled, known a-priori, and exhibited simultaneously) of increasing biological complexity. Additional theoretical validation tests were performed on Monte Carlo-generated Mueller matrices from analogous turbid media exhibiting simultaneous depolarization (Δ), linear retardance (δ) and optical rotation (Ψ) effects. After successful evaluation, the potential advantage of the differential matrix decomposition over the polar decomposition formalism was explored for monitoring of myocardial tissue regeneration following stem cell therapy.


Assuntos
Diagnóstico por Imagem/métodos , Nefelometria e Turbidimetria/métodos , Fenômenos Ópticos , Animais , Método de Monte Carlo , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/metabolismo , Miocárdio/química , Miocárdio/metabolismo , Imagens de Fantasmas , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA