Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Brain Topogr ; 28(5): 666-679, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25331991

RESUMO

Functional connectivity measured from resting state fMRI (R-fMRI) data has been widely used to examine the brain's functional activities and has been recently used to characterize and differentiate brain conditions. However, the dynamical transition patterns of the brain's functional states have been less explored. In this work, we propose a novel computational framework to quantitatively characterize the brain state dynamics via hidden Markov models (HMMs) learned from the observations of temporally dynamic functional connectomics, denoted as functional connectome states. The framework has been applied to the R-fMRI dataset including 44 post-traumatic stress disorder (PTSD) patients and 51 normal control (NC) subjects. Experimental results show that both PTSD and NC brains were undergoing remarkable changes in resting state and mainly transiting amongst a few brain states. Interestingly, further prediction with the best-matched HMM demonstrates that PTSD would enter into, but could not disengage from, a negative mood state. Importantly, 84% of PTSD patients and 86% of NC subjects are successfully classified via multiple HMMs using majority voting.


Assuntos
Encéfalo/fisiopatologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Adulto , Estudos de Casos e Controles , Conectoma , Humanos , Cadeias de Markov , Vias Neurais/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA