RESUMO
With the crude oil exploration activities in the Shanbei oilfield of China, the risk of soil contamination with crude oil spills has become a major concern. This study aimed at assessing the bioremediation potential of the petroleum polluted soils by investigating the expression of key functional genes decoding alkane and aromatic component degradation using an array of primers and real-time quantitative PCR (qPCR), and the functional microbiomes were determined using a combination of substrate-induced metabolic responses and high throughput sequencing. The results showed that the species that were more inclined to degrade aliphatic fraction of crude oil included Acinetobacter, Stenotrophomonas, Neorhizobium and Olivebacter. And Pseudomonas genus was a highly specific keystone species with the potential to degrade PAH fraction. Both aliphatic and PAH-degrading genes were upregulated when the soil petroleum contents were less than 10,000 mg/kg but downregulated when the oil contents were over 10,000 mg/kg. Bioremediation potential could be feasible for medium pollution with petroleum contents of less than 10,000 mg/kg. Optimization of the niche of Acinetobacter, Stenotrophomonas, Pseudomonas, Neorhizobium and Olivebacter species was beneficial to the biodegradation of refractory hydrocarbon components in the Shanbei plateau oilfield.