Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 112(4): 1014-1028, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36198049

RESUMO

Ammonium (NH4 + )-based fertilization efficiently mitigates the adverse effects of nitrogen fertilization on the environment. However, high concentrations of soil NH4 + provoke growth inhibition, partly caused by the reduction of cell enlargement and associated with modifications of cell composition, such as an increase of sugars and a decrease in organic acids. Cell expansion depends largely on the osmotic-driven enlargement of the vacuole. However, the involvement of subcellular compartmentation in the adaptation of plants to ammonium nutrition has received little attention, until now. To investigate this, tomato (Solanum lycopersicum) plants were cultivated under nitrate and ammonium nutrition and the fourth leaf was harvested at seven developmental stages. The vacuolar expansion was monitored and metabolites and inorganic ion contents, together with intracellular pH, were determined. A data-constrained model was constructed to estimate subcellular concentrations of major metabolites and ions. It was first validated at the three latter developmental stages by comparison with subcellular concentrations obtained experimentally using non-aqueous fractionation. Then, the model was used to estimate the subcellular concentrations at the seven developmental stages and the net vacuolar uptake of solutes along the developmental series. Our results showed ammonium nutrition provokes an acidification of the vacuole and a reduction in the flux of solutes into the vacuoles. Overall, analysis of the subcellular compartmentation reveals a mechanism behind leaf growth inhibition under ammonium stress linked to the higher energy cost of vacuole expansion, as a result of alterations in pH, the inhibition of glycolysis routes and the depletion of organic acids.


Assuntos
Compostos de Amônio , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Compostos de Amônio/metabolismo , Vacúolos/metabolismo , Folhas de Planta/metabolismo , Nitrogênio/metabolismo
2.
New Phytol ; 218(3): 1205-1216, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29465773

RESUMO

ß-Aminobutyric acid (BABA) induces broad-spectrum disease resistance, but also represses plant growth, which has limited its exploitation in crop protection. BABA perception relies on binding to the aspartyl-tRNA synthetase (AspRS) IBI1, which primes the enzyme for secondary defense activity. This study aimed to identify structural BABA analogues that induce resistance without stunting plant growth. Using site-directed mutagenesis, we demonstrate that the (l)-aspartic acid-binding domain of IBI1 is critical for BABA perception. Based on interaction models of this domain, we screened a small library of structural BABA analogues for growth repression and induced resistance against biotrophic Hyaloperonospora arabidopsidis (Hpa). A range of resistance-inducing compounds were identified, of which (R)-ß-homoserine (RBH) was the most effective. Surprisingly, RBH acted through different pathways than BABA. RBH-induced resistance (RBH-IR) against Hpa functioned independently of salicylic acid, partially relied on camalexin, and was associated with augmented cell wall defense. RBH-IR against necrotrophic Plectosphaerella cucumerina acted via priming of ethylene and jasmonic acid defenses. RBH-IR was also effective in tomato against Botrytis cinerea. Metabolic profiling revealed that RBH, unlike BABA, does not majorly affect plant metabolism. RBH primes distinct defense pathways against biotrophic and necrotrophic pathogens without stunting plant growth, signifying strong potential for exploitation in crop protection.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Desenvolvimento Vegetal , Imunidade Vegetal , Aminobutiratos/farmacologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Resistência à Doença/efeitos dos fármacos , Etilenos/metabolismo , Fungos/fisiologia , Homosserina/farmacologia , Indóis/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Mutação/genética , Desenvolvimento Vegetal/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Domínios Proteicos , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA